Skip to main content
Log in

57Fe Mössbauer measurements and electronic structure calculations on natural lawsonites

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baur WH (1978) Crystal structure refinement of lawsonite. Am Mineral 63:311–315

    Google Scholar 

  • Burns RG (1994) Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Int 91:739–745

    Article  Google Scholar 

  • Dyar MD (1984) Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. Am Mineral 69:1127–1144

    Google Scholar 

  • Davis GA, Pabst A (1960) Lawsonite and pumpellyite in glaucophane schists, North Berkeley Hills, California. With notes on the X-ray crystallography of lawsonite. Am J Sci 258:689–704

    Article  Google Scholar 

  • Dufek P, Blaha P, Schwarz K (1995) Determination of the nuclear quadrupole moment of 57Fe. Phys Rev Lett 75:3545–3548

    Article  Google Scholar 

  • Ernst WG, Seki Y, Onuki H, Gilbert MC (1970) Comparative study of low-grade metamorphism in the California Coast Ranges and the outer metamorphic belt of Japan. Geol Soc Am Mem 124:1–276

    Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838

    Article  Google Scholar 

  • Geiger CA, Armbruster Th, Lager GA, Jiang K, Lottermoser W, Amthauer G (1992) A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol’danskii–Karyagin effect. Phys Chem Miner 19:121–126

    Article  Google Scholar 

  • Geiger CA, Grodzicki M, Amthauer G (2003) The crystal chemistry and FeII-site properties of aluminosilicate garnet solid solutions as revealed by Mössbauer spectroscopy and electronic structure calculations. Phys Chem Miner 30:280–292

    Google Scholar 

  • Grodzicki M (1980) A self-consistent-charge-Xα method. I. Theory J Phys B 13:2683–2691

    Google Scholar 

  • Grodzicki M (1985) Theorie und Anwendungen der Self-Consistent-Charge-Xα Methode, Thesis of habilitation, Hamburg

  • Grodzicki M, Amthauer G (2000) Electronic and magnetic structure of vivianite: cluster molecular orbital calculations. Phys Chem Miner 27:694–702

    Article  Google Scholar 

  • Grodzicki M, Männing V, Trautwein AX, Friedt JM (1987) Calibration of isomer shift and quadrupole coupling for 119Sn, 127I and 129I as derived from self-consistent charge Xα calculations and Mössbauer measurements. J Phys B 20:5595–5625

    Article  Google Scholar 

  • Grodzicki M, Heuss-Assbichler H, Amthauer G (2001) Mössbauer investigations and molecular orbital calculations on epidote. Phys Chem Miner 28:675–681

    Article  Google Scholar 

  • Grodzicki M, Redhammer G, Amthauer G, Schünemann V, Trautwein A, Velickov B, Schmid-Beurmann P (2003) Electronic structure of Fe-bearing lazulites. Am Mineral 88:481–488

    Google Scholar 

  • Hawthorne FC (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, reviews in mineralogy, vol 18. Mineral Society of America, Washington, pp 255–340

  • Höche T, van Aken PA, Grodzicki M, Heyroth F, Keding R, Uecker R (2004) Electron energy-loss spectroscopy at incommensurately modulated crystalline and glassy Ba2TiGe2O8. Philos Mag 84:3117–3132

    Article  Google Scholar 

  • Keutel H, Käpplinger I, Jäger EG, Grodzicki M, Schünemann V, Trautwein AX (1999) Structural, magnetic and electronic properties of a pentacoordinated intermediate-spin (S = 3/2) iron(III) complex with a macrocyclic [N4]2− ligand. Inorg Chem 38:2320–2327

    Article  Google Scholar 

  • Labotka TC, Rossman GR (1974) The infrared pleochroism of lawsonite: the orientation of water and hydroxide groups. Am Mineral 59:799–806

    Google Scholar 

  • Libowitzky E, Armbruster Th (1995) Low temperature phase transitions and the role of hydrogen bonds in lawsonite. Am Mineral 80:1277–1285

    Google Scholar 

  • Libowitzky E, Rossman GR (1996) FTIR spectroscopy of lawsonite between 82 to 325K. Am Mineral 81:1080–1091

    Google Scholar 

  • Lottermoser W, Kaliba P, Forcher K, Amthauer G (1993) A computer program for the evaluation of Mössbauer data. University of Salzburg, Austria

  • Lottermoser W, Steiner K, Grodzicki M, Jiang K, Scharfetter G, Bats JW, Redhammer G, Treutmann W, Hosoya S, Amthauer G (2002) The electric field gradient in synthetic fayalite α-Fe2SiO4 at moderate temperatures. Phys Chem Miner 29:112–121

    Article  Google Scholar 

  • Lougear A, Grodzicki M, Bertoldi C, Trautwein AX, Steiner K, Amthauer G (2000) Mössbauer and molecular orbital study of chlorites. Phys Chem Miner 27:258–269

    Article  Google Scholar 

  • Magini M, Licheri G, Pachina G, Piccaluga G, Pinna G (1988) X-ray diffraction of ions in aqueous solutions: hydration and complex formation. CRC, Boca Raton

  • Martin-Olalla JM, Hayward SA, Meyer HW, Ramos S, Del Cerro J, Carpenter MA (2001) Phase transitions in lawsonite: a calorimetric study. Eur J Mineral 13:5–14

    Article  Google Scholar 

  • McCammon CA (2004) Mössbauer spectroscopy: applications. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU Notes Mineral, vol 6. Eötvös University Press, Budapest, pp 369–398

  • Meyer HW, Marion S, Sondergeld P, Carpenter MA, Knight KS, Redfern SAT, Dove MT (2001) Displacive components of the low-temperature phase transitions in lawsonite. Am Mineral 86:566–577

    Google Scholar 

  • Newton RC, Kennedy GC (1963) Some equilibrium reactions in the join CaAl2Si2O8-H2O. J Geophys Res 68:2967–2983

    Article  Google Scholar 

  • Pawley AR (1994) The pressure and temperature stability limits of lawsonite, implications for H2O recycling in subduction zones. Contrib Mineral Petrol 118:99–108

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Sheldrick G (1997) SHELXS-97 and SHELXL-97, programs for solving and refining crystal structures. University of Göttingen, Germany

Download references

Acknowledgments

The authors thank A. Fehler (Kiel) for the preparation of the microprobe samples and B. Mader (Kiel) for undertaking the microprobe analyses, and L. Peters for improvements in style of the first version of this article. All calculations were carried out at the Research Institute of Software Technology (RIST) in Salzburg. S.-U.W. gratefully acknowledges financial support by the Austrian Fund of Scientific Research (FWF) under the contract number P18329-N20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-U. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, SU., Grodzicki, M., Geiger, C.A. et al. 57Fe Mössbauer measurements and electronic structure calculations on natural lawsonites. Phys Chem Minerals 34, 1–9 (2007). https://doi.org/10.1007/s00269-006-0121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0121-y

Keywords

Navigation