Skip to main content
Log in

Thermal expansion of gehlenite, Ca2Al[AlSiO7], and the related aluminates LnCaAl[Al2O7] with Ln = Tb, Sm

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1100 K) and SmCaAl[Al2O7] (up to T=1024 K) has been determined. All compounds are of the melilite structure type with space group \(P{\bar{4}}2_{1}m.\) Thermal expansion data were obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6×K−1+3.6(7)×10−9ΔT×K−2 and α3=15.0(1)×10−6×K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6×K−1+2.0(2)×10−9ΔT×K−2 and α3=8.5(2)×10−6×K−1+2.0(3)×10−9ΔT×K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)×10−6×K−1+1.7(2)×10−9ΔT×K−2 and α3=9.344(5)×10−6×K−1. The expansion mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ‘proper’ layer structure, the aluminates show increased framework structure behavior. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)–(Ln 3++Al3+) in the melilite-type structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chall M, Knorr K, Ehm L, Depmeier W (1999) Estimating intensity errors of powder diffraction from area detectors. High Press Res 17:315–323

    Google Scholar 

  • Durif A, Forrat F (1958) Gallates et aluminates isomorphes de la géhlénite. Bull Soc Franç Minér Crist 81:107–109

    Google Scholar 

  • Enck FD, Dommel JG (1965) Behaviour of thermal expansion of NaCl at elevated temperatures. J Appl Phys 36:389–394

    Article  Google Scholar 

  • Hammersley AP /ESRF (1987–2001) fit2D, program for the analysis of two dimensional powder diffraction data

  • Knapp M, Joco V, Baehtz C, Brecht HH, Berghaeuser A, Ehrenberg H, von Seggern H, Fuess H (2004b) Position-sensitive detector system OBI for high resolution X-ray powder diffraction using on-site readable image plates. Nucl Instrum Meth A521:565–570

    Google Scholar 

  • Knapp M, Baehtz C, Ehrenberg H, Fuess H (2004a) The synchrotron powder diffractometer at beamline B2 at HASYLAB / DESY: status and capabilities. J Synchrotron Rad 11:328–334

    Article  Google Scholar 

  • Küppers H (2003) Thermal expansion. In: Authier A (ed) International tables for crystallography, vol D. Kluwer, Dordrecht, pp 99–104

  • Lauterbach R, Schnick W (1999) Sm2Si3O3N4 und Ln 2Si2.5Al0.5O3.5N3.5 (Ln = Ce, Pr, Nd, Sm, Gd)—neuer synthetischer Zugang zu N-haltigen Melilith-Phasen und deren Einkristall-Röntgenstrukturanalyse. Z Anorg Allg Chem 625:429

    Article  Google Scholar 

  • Lejus AM, Pelletier-Allard N, Pelletier R, Vivien D (1996) Site selective spectroscopy of Nd ions in gehlenite (Ca2Al2SiO7), a new laser material. Opt Mater 6:129–137

    Article  Google Scholar 

  • Malinovskii YuA, Panina ZV (1996) X-ray study of chromium- and boron-doped synthetic Ca2Al(Al Si)O7 gehlenites. Kristallografiya 41:240–247

    Google Scholar 

  • McConnell JDC, McCammon CA, Angel RJ, Seifert F (2000) The nature of the incommensurate structure in Å kermanit, Ca2MgSi2O7, and the character of its transformation from the normal structure. Z Kristallogr 215:669–677

    Article  Google Scholar 

  • Pathak PD, Vasavada NG (1970) Thermal expansion of NaCl, KCl and CsBr by X-ray diffraction and the law of corresponding states. Acta Cryst A26:655–658

    Google Scholar 

  • Rodriguez-Carvajal J (2002) Fullprof V.2.20, program for Rietveld, profile matching and integrated intensity refinement, Laboratoire Léon Brillouin, Saclay

  • Teske CL (1980) Ba2ZnGe2S6O: Ein neues Oxidsulfid mit Tetraedergerüststruktur. Z Naturforsch 35b:672–675

    Google Scholar 

  • Teske CL (1985) Über Oxidsulfide mit Å kermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O und Sr2ZnGe2S6O. Z anorg allg Chem 531:52–60

    Article  Google Scholar 

  • Warren BE (1930) The structure of melilite, (Ca,Na)2(Mg,Al)1(Si, Al)2O7. Z Kristallogr 74:131–138

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (De 412/27-1, 2), S. Bass and E. Kirchhof for their help with some of the syntheses and the workshop staff for the construction of the furnace. Additionally, we wish to thank the HASYLAB / DESY for providing beam time at the B2 diffractometer (grant II-04-033). Critical comments by Dr. Martin Ryan and an anonymous reviewer helped to improve the manuscript and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Peters.

Additional information

This article has been mistakenly published twice. The first and original version of it is available at http://dx.doi.org/10.1007/s00269-005-0015-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, L., Knorr, K., Knapp, M. et al. Thermal expansion of gehlenite, Ca2Al[AlSiO7], and the related aluminates LnCaAl[Al2O7] with Ln = Tb, Sm. Phys Chem Minerals 32, 546–551 (2005). https://doi.org/10.1007/s00269-005-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0021-6

Keywords

Navigation