Skip to main content
Log in

Heat-capacity measurements and absolute entropy of ɛ-Mg2PO4OH

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The low-temperature heat capacity of ɛ-Mg2PO4OH was measured between 10 and 400 K by adiabatic calorimetry. No phase transition was observed over this temperature range. A relative enthalpy increment of 22,119 J mol−1 and an absolute entropy value of 127.13±0.25 J mol−1 K−1 at 298.15 K are derived from the results. The low-temperature heat-capacity data are compared with the DSC data obtained from 143 K to 775 K and show marginal differences in the common temperature range. The latter data are fitted by the polynomial

$$ C_p = \left\{ {316.62 - 2957\,T^{ - 0.5} - 563350\,T^{ - 2} + 955.55 \times 10^5 \,T^{ - 3} } \right\}{\text{J}}\,{\text{K}}^{ - 1} \,{\text{mol}}^{ - 1} , $$

which allows extrapolation to high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Annersten H, Nord AG (1980) A high pressure phase of magnesium orthophosphate. Acta Chem Scand 34:389–390

    Google Scholar 

  • Benisek A, Dachs E, Cemič L (1999) Heat capacities of Tschermak substituted Fe-biotite. Contrib Mineral Petrol 135:53–61

    Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Google Scholar 

  • Berthet G, Joubert JC, Bertaut EF (1972) Vacancies ordering in new metastable orthophosphates (Co3)P2O8 and (Mg3)P2O8 with olivine-related structure. Z Kristallogr 136:98–105

    Google Scholar 

  • Bolland MDA, Glencross RN, Gilkes RJ, Kumar V (1992) Agronomic effectiveness of partially acidulated rock phosphate and fused calcium-magnesium phosphate compared with superphosphate. Fertil Res 32:169–183

    Google Scholar 

  • Bosenick A, Geiger CA, Cemič L (1996) Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochim Cosmochim Acta 60:3215–3227

    Google Scholar 

  • Brunet F, Vielzeuf D (1996) The farringtonite / Mg3(PO4)2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus. Eur J Mineral 8:349–354

    Google Scholar 

  • Brunet F, Chopin C, Seifert F (1998) Phase relations in the MgO–P2O5–H2O system and the stability of phosphoellenbergerite: petrological implications. Contrib Mineral Petrol 131:54–70

    Google Scholar 

  • Brunet F, Morineau D, Schmid-Beurmann P (2004) Heat-capacity of lazulite, MgAl2(PO4)2(OH)2, from 35 to 298 K and a (S–V) value for P2O5 to estimate phosphates entropy. Mineral Mag 68:123–134

    Google Scholar 

  • Ditmars DA, Douglas TB (1971) Measurements of the relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy reference material No. 720) from 273 to 1173 K. J Res 75A:401–420

    Google Scholar 

  • Driessens FCN, Boltong MG, Zapatero MI, Verbeeck RMH, Bonfield W, Bermudez O, Fernandez E, Ginebra MP, Planell JA (1995) In-vivo behavior of 3 calcium-phosphate cements and a magnesium phosphate cement. J Mater Sci - Mater in Medicine 6:272–278

    Google Scholar 

  • Fasshauer DW, Chatterjee ND, Cemič L (1998) A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases. Contrib Mineral Petrol 133:186–198

    Google Scholar 

  • Holland TJB (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model. Am Mineral 74:5–13

    Google Scholar 

  • Jaulmes S, Elfakir A, Quarton M, Brunet F, Chopin C (1997) Structure cristalline de la phase haute température et haute pression de Mg3(PO4)2. J Solid State Chem 129:341–345

    Google Scholar 

  • Leyx C, Chopin C, Brunet F, Schmid-Beurmann P, ParraT (2002) Towards a thermodynamic database for phosphate minerals: volume properties of Mg-phosphates and phase relations in the system MgO–Al2O3–P2O5–SiO2–H2O. IMA 18th general meeting, Edinburgh, Programme with Abstracts, p 240

    Google Scholar 

  • Lodders K (1999) Revised thermochemical properties of phosphinidene (PH), phosphine (PH3), phosphorus nitride (PN), and magnesium phosphate (Mg3P2O8). J Phys Chem Ref Data 28:1705–1712

    Google Scholar 

  • Lyon JE, Fox TU, Lyons JW (1966) Phosphate bonding of magnesia refractories. Am Ceram Soc Bull 45:1078–1081

    Google Scholar 

  • Miltenburg JC van, Genderen ACG van, Berg GJK van den (1998) Design improvements in adiabatic calorimetry. The heat capacity of cholesterol between 10 and 425 K. Thermochim Acta 319:151–162

    Google Scholar 

  • Miltenburg JC van, Berg GJK van den, Bommel MJ van (1987) Construction of an adiabatic calorimeter. Measurement of the molar heat capacity of synthetic sapphire and of n-heptane. J Chem Thermodyn 19:1129–1137

    Google Scholar 

  • Oetting FL, McDonald RA (1963) The thermodynamic properties of magnesium orthophosphate and magnesium pyrophosphate. J Phys Chem 67:2737–2743

    Google Scholar 

  • Preston-Thomas H (1990) The International Temperature Scale of 1990 (ITS-90). Metrologia 27:3–10

    Google Scholar 

  • Raade G (1990) Hydrothermal syntheses of Mg2PO4OH polymorphs. N Jb Miner Mh 1990:289–300

    Google Scholar 

  • Raade G, Rømming C (1986) The crystal structure of ɛ-Mg2PO4OH, a synthetic high-temperature polymorph. Zeit Kristallographie 177:1–13

    Google Scholar 

  • Sarkar AK (1990) Phosphate cement-based fast-setting binders. Am Ceram Soc Bull 69:234–238

    Google Scholar 

  • Sata T (1997) Phase relations in the system Ca3(PO4)2–CaMg(SiO3)2–MgSiO3–SiO2. J Ceram Soc Japan 105:26–30

    Google Scholar 

  • Stevens CG, Turkdogan ET (1954) The heats of formation of trimanganous phosphate and trimagnesium phosphate. Trans Faraday Soc 50:370–373

    Google Scholar 

  • Sutor D, Wooley SE, Ellingsworth JJ (1974) Some aspects of the urinary stones in Great Britain and Northern Ireland. Brit J Urol 46:275–288

    Google Scholar 

  • Théodoret, Lenzi J, Roux P, Bonel G, Lenzi M (1987) Comportement sous haute pression d’orthophosphates mixtes de calcium et de cobalt Ca3-x Co x (PO4)2, 0,40<x<3. Rev Chim Minér 24:478–488

    Google Scholar 

  • Yang Q, Zhu B, Wu X (2000) Characteristics and durability tests of magnesium phosphate cement-based material for rapid repair of concrete. Materials and Structures 33:229–234

    Google Scholar 

Download references

Acknowledgements

We thank Mrs Kluge, Kiel, for the DSC measurements, Fabrice Brunet and Peter Schmid-Beurmann for numerous discussions, Gunnar Raade and the anonymous referee for their careful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Chopin.

Additional information

Software information: WINDOWS operating system, WORD word processing, SigmaPlot diagrams exported in tiff format.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyx, C., Van Miltenburg, J.C., Chopin, C. et al. Heat-capacity measurements and absolute entropy of ɛ-Mg2PO4OH. Phys Chem Minerals 32, 13–18 (2005). https://doi.org/10.1007/s00269-004-0432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-004-0432-9

Keywords

Navigation