Skip to main content

Advertisement

Log in

Temperature effects on vital rates of different life stages and implications for population growth of Baltic sprat

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Baltic sprat (Sprattus sprattus balticus S.) is a key species in the pelagic ecosystem of the Baltic Sea. Most stocks of small pelagic species are characterized by natural, fishery-independent fluctuations, which make it difficult to predict stock development. Baltic sprat recruitment is highly variable, which can partly be related to climate-driven variability in hydrographic conditions. Results from experimental studies and field observations demonstrate that a number of important life history traits of sprat are affected by temperature, especially the survival and growth of early life stages. Projected climate-driven warming may impact important processes affecting various life stages of sprat, from survival and development during the egg and larval phases to the reproductive output of adults. This study presents a stage-based matrix model approach to simulate sprat population dynamics in relation to different climate change scenarios. Data obtained from experimental studies and field observations were used to estimate and incorporate stage-specific growth and survival rates into the model. Model-based estimates of population growth rate were affected most by changes in the transition probability of the feeding larval stage at all temperatures (+0, +2, +4, +6 °C). The maximum increase in population growth rate was expected when ambient temperature was elevated by 4 °C. Coupling our stage-based model and more complex, biophysical individual-based models may reveal the processes driving these expected climate-driven changes in Baltic Sea sprat population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumann H, Hinrichsen HH, Voss R, Stepputtis D, Grygiel W, Clausen LW, Temming A (2006a) Linking growth to environmental histories in central Baltic young of the year sprat, Sprattus sprattus: an approach based on otolith microstructure analysis and hydrodynamic modelling. Fish Oceanogr 15:465–476

    Article  Google Scholar 

  • Baumann H, Hinrichsen HH, Möllmann C, Köster FW, Malzahn AM, Temming A (2006b) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can J Fish Aquat Sci 63:2191–2201

    Article  Google Scholar 

  • Baumann H, Peck MA, Götze H-E, Temming A (2007) Starving early juvenile sprat Sprattus sprattus (L.) in western Baltic coastal waters: evidence from combined field and laboratory observations in August and September 2003. J Fish Biol 70:853–866

    Article  Google Scholar 

  • Baumann H, Voss R, Hinrichsen HH, Mohrholz V, Schmidt JO, Temming A (2008) Investigating the selective survival of summer- over spring-born sprat, Sprattus sprattus, in the Baltic Sea. Fish Res 91:1–14

    Article  Google Scholar 

  • Buckley LJ, Caldarone EM, Clemmesen C (2008) Multi-species larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: results from a meta-analysis. Mar Ecol Prog Ser 371:221–232

    Article  Google Scholar 

  • Butler JL, Smith PE, Lo NCH (1993) The effect of natural variability of life-history parameters on anchovy and sardine population growth. CalCOFI Rep 34:104–111

    Google Scholar 

  • Casini M, Kornilovs G, Cardinale M, Möllmann C, Grygiel W, Jonsson P, Raid T, Flinkman J, Feldman V (2011) Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: compelling evidence using an extensive international acoustic survey. Pop Ecol. doi:10.1007/s10144-011-0269-2

    Google Scholar 

  • Caswell H (2001) Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer, Sunderland

    Google Scholar 

  • Clemmesen C, Caldarone EM, Voss R, Hinrichsen HH (2011) Effects of photoperiod and temperature on recent growth rates of sprat larvae in the Baltic Sea. ICES CM 2011 H:18.

  • Conover DO (1992) Seasonality and the scheduling of life history at different latitudes. J Fish Biol 41(sB): 161–178

    Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423

    Article  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv Mar Biol 26:249–293

    Article  Google Scholar 

  • Daewel U, Peck MA, Kühn W, St. John MA, Alekseeva I, Schrum C (2008) Coupling ecosystem and individual-based models to simulate the influence of climate variability on potential growth and survival of larval sprat in the North Sea. Fish Oceanogr 17:333–351

    Article  Google Scholar 

  • Dickmann M, Möllmann C, Voss R (2007) Feeding ecology of central Baltic sprat Sprattus sprattus larvae in relation to zooplankton dynamics: implications for survival. Mar Ecol Prog Ser 342:277–289

    Article  Google Scholar 

  • Draganik B, Wyszynski M (2004) The European anchovy (Engraulis encrasicolus [L.]) in the Baltic Sea. Bull Sea Fish Inst 162:53–58

    Google Scholar 

  • Hales L Jr, Able K (2001) Winter mortality, growth, and behavior of young-of-the-year of four coastal fishes in New Jersey (USA) waters. Mar Biol 139:45–54

    Article  Google Scholar 

  • Haslob H (2011) Reproductive ecology of Baltic sprat and its application in stock assessment. University of Kiel, Germany, Dissertation 133 pp

    Google Scholar 

  • Haslob H, Clemmesen C, Schaber M, Hinrichsen HH, Schmidt JO, Voss R, Kraus G, Köster FW (2007) Invading Mnemiopsis leidyi as a potential threat to Baltic fish. Mar Ecol Prog Ser 349:303–306

    Article  Google Scholar 

  • Haslob H, Tomkiewicz J, Hinrichsen HH, Kraus G (2011) Spatial and interannual variability in Baltic sprat batch fecundity. Fish Res 110:289–297

    Article  Google Scholar 

  • Hinrichsen H-H, Peck MA, Schmidt J, Huwer B, Voss R (2010) Decadal changes in the diel vertical migration behavior of Baltic sprat larvae: causes and consequences. Limnol Oceanogr 55:1484–1498

    Article  Google Scholar 

  • Hjort J (1914) Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et Procès-Verbaux des Réunions 20:1–228

    Google Scholar 

  • Hood GM (2008) PopTools version 3.0.6. Available on the internet. http://www.cse.csiro.au/poptools

  • Hufnagl M, Peck MA (2011) Physiological-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: Insights on climate-driven life history scheduling. ICES J Mar Sci 68(6):1170–1188

    Article  Google Scholar 

  • ICES (2006) Report of the Study Group on Multispecies Assessment in the Baltic (SGMAB). ICES CM 2006 BCC:07

    Google Scholar 

  • IPCC (International Panel on Climate Change) (2007) Climate Change 2007: The Physical Science Basis. IPCC, Geneva

    Google Scholar 

  • Köster FW, Möllmann C (2000) Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–323

    Article  Google Scholar 

  • Köster FW, Hinrichsen HH, Schnack D, St John MA, Mackenzie BR, Tomkiewicz J, Möllmann C, Kraus G, Plikshs M, Makarchouk A (2003) Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Sci Mar 67: 129–154

    Google Scholar 

  • Lefkovitch LP (1965) The study of population growth in organisms grouped by stages. Biometrics 21:1–18

    Article  Google Scholar 

  • Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 33:183–212

    Article  CAS  Google Scholar 

  • MacKenzie BR, Köster FW (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794

    Article  Google Scholar 

  • MacKenzie BR, Schiedek D (2007) Daily ocean monitoring since the 1860s shows record warming of northern European seas. Glob Change Biol 13:1335–1347

    Article  Google Scholar 

  • Mantzouni I, Somarakis S, Moutopoulos DK, Kallianiotis A, Koutsikopoulos C (2007) Periodic, spatially structured matrix model for the study of anchovy (Engraulis encrasicolus) population dynamics in N Aegean Sea (E. Mediterranean). Ecol Model 208:367–377

    Article  Google Scholar 

  • Megrey B, Rose K, Klumb R, Hay D, Werner F, Eslinger D, Smith S (2007) A bioenergeticsbased population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: description, calibration and sensitivity analysis. Ecol Model 202:144–164

    Article  Google Scholar 

  • Meier HEM (2005) Modeling the age of Baltic Seawater masses: quantification and steady state sensitivity experiments. J Geophys Res 110:C02006

    Article  Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late 21st century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW (2004) Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol 65:1563–1581

    Article  Google Scholar 

  • Möllmann C, Müller-Karulis B, Kornilovs G, St John MA (2008) Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J Mar Sci 65(3):302–310

    Article  Google Scholar 

  • Muus BJ, Nielsen JG, Dahlstrøm P, Nyström BO (1999) Sea fish. Wiley-Blackwell, UK 340 pp

    Google Scholar 

  • Nissling A (2004) Effects of temperature on egg and larval survival of cod (Gadus morhua) and sprat (Sprattus sprattus) in the Baltic Sea–implications for stock development. Hydrobiologia 514:115–123

    Article  Google Scholar 

  • Nissling A, Müller A, Hinrichsen HH (2003) Specific gravity and vertical distribution of sprat eggs in the Baltic Sea. J Fish Biol 63:280–299

    Article  Google Scholar 

  • Ojaveer H, Kotta J, Põllumäe A, Põllupüü M, Jaanus A, Vetemaa M (2011) Alien species in a brackish water temperate ecosystem: annual-scale dynamics in response to environmental variability. Environ Res 111:933–942

    Article  CAS  Google Scholar 

  • Peck MA, Hufnagl M (2012) Can IBMs explain why most larvae die in the sea? model scenarios and sensitivity analyses reveal research needs. J Mar Sys 93:77–93

    Article  Google Scholar 

  • Peck MA, Clemmesen C, Herrmann J-P (2005) Ontogenic changes in the allometric scaling of the mass and length relationship in Sprattus sprattus. J Fish Biol 66:882–887

    Article  Google Scholar 

  • Peck MA, Baumann H, Bernreuther M, Clemmesen C, Herrmann JP, Haslob H, Huwer B, Kanstinger P, Köster FW, Petereit C, Temming A, Voss R (in press) The ecophysiology of Sprattus sprattus in the Baltic and North Seas. Progress in Oceanography

  • Pertierra JP, Lleonart J, Lo NCH (1997) Application of a stage-specific matrix model and length-cohort based analysis to assess the anchovy fishery in Catalan coastal waters (NW Mediterranean Sea). Fish Res 30:127–137

    Article  Google Scholar 

  • Petereit C, Haslob H, Kraus G, Clemmesen C (2008) The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar Biol 154:295–306

    Article  Google Scholar 

  • Petereit C, Hinrichsen HH, Voss R, Kraus G, Freese M, Clemmesen C (2009) The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider). Sci Mar 73(S1): 59–72

    Google Scholar 

  • Petrova EG (1960) On the fecundity and the maturation of the Baltic sprat. Trudy Vsesojuznyj naucno issledovatelskij Institut Morskogo Rybnogo Xozjajstva i Okeanografii 42:99–108

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change impacts on fish and fisheries: towards a cause and effect understanding. J Fish Biol 77:1745–1779

    Article  Google Scholar 

  • Raab K, Nagelkerke LAJ, Boerée C, Rijnsdorp AD, Temming A, Dickey-Collas M (2011) Anchovy Engraulis encrasicolus diet in the North and Baltic Seas. J Sea Res 65:131–140

    Article  Google Scholar 

  • Rosenberg AA, Doyle RW (1986) Analysing the effect of age structure on stock-recruitment relationships in herring (Clupea harengus). Can J Fish Aquat Sci 43:674–679

    Article  Google Scholar 

  • Rudstam LG, Aneer G, Hildén M (1994) Top-down control in the pelagic Baltic ecosystem. Dana 10:105–129

    Google Scholar 

  • Schaber M, Haslob H, Huwer B, Harjes A, Hinrichsen HH, Storr-Paulsen M, Schmidt JO, Voss R, Neumann V, Köster FW (2011) Spatio-temporal overlap of the alien invasive ctenophore Mnemiopsis leidyi and ichthyoplankton in the Bornholm Basin (Baltic Sea). Biol Invasions 13:2647–2660

    Article  Google Scholar 

  • Schiemer F, Keckeis H, Kamler E (2003) The early life history stages of riverine fish: ecophysiological and environmental bottlenecks. Comp Biochem Physiol A 133:439–449

    Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 60:1129–1157

    Google Scholar 

  • Travers M, Shin Y-J, Jennings S, Cury P (2007) Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog Oceanogr 75:751–770

    Article  Google Scholar 

  • Tsuruta Y (1992) Reproduction in the Japanese anchovy (Engraulis japonica) as related to population fluctuation. Bull Nat Res Inst Fish Eng 13:129–168

    Google Scholar 

  • Voss R, Schmidt JO, Schnack D (2007) Vertical distribution of Baltic sprat larvae: changes in patterns of diel migration? ICES J Mar Sci 64:956

    Article  Google Scholar 

  • Voss R, Dickmann M, Hinrichsen HH, Flöter J (2008) Environmental factors influencing larval sprat Sprattus sprattus feeding during spawning time in the Baltic Sea. Fish Oceanogr 17:219–230

    Article  Google Scholar 

  • Voss R, Hinrichsen HH, Stepputtis D, Bernreuther M, Huwer B, Neumann V, Schmidt JO (2011) Egg mortality: predation and hydrography in the central Baltic. ICES J Mar Sci 68(7):1379–1390

    Article  Google Scholar 

  • Zenitani H, Kimura R (1997) Increase in late winter egg production of the Japanese anchovy as related to recovery of the stock size along the Pacific coast of Japan. Nippon Suisan Gakkaishi 63:665–671

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Söndgerath for an introduction to matrix modeling and to two anonymous reviewers for valuable comments on the manuscript. This research was supported by the German Science Foundation (DFG) cluster project RECONN2 #CL126/3-1 (Resolving Trophodynamic Consequences of Climate Change) within the priority program 1162 AQUASHIFT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Haslob.

Additional information

Communicated by R. Adrian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslob, H., Hauss, H., Petereit, C. et al. Temperature effects on vital rates of different life stages and implications for population growth of Baltic sprat. Mar Biol 159, 2621–2632 (2012). https://doi.org/10.1007/s00227-012-1933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1933-6

Keywords

Navigation