Skip to main content
Log in

Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The seasonal and spatial distribution of Pseudocalanus acuspes in the Bornholm Basin (Central Baltic Sea) was studied on 16 cruises between March 2002 and May 2003 from stratified (10 m) multinet samples. The highest abundances were reached in May 2002 and April 2003 (618×103 and 869×103 ind. m−2, respectively). Ontogenetic vertical distribution was stage specific with differences of mean annual weighted mean depth >30 m between nauplii and males; it followed closely the hydrography which was characterized by a permanent halocline and a summer thermocline. The vertical distribution showed a positive correlation with salinity especially in the older developmental stages; the relationship to temperature was negative in the nauplii and copepodite stage I (CI). Most of the stages performed a seasonal migration. The consequences of the vertical distribution patterns in relation to the effects of climate and predation are discussed. A stage shift from nauplii in April/May to CIV and CV as overwintering stages indicated slow seasonal development. However, nauplii were observed all the year round, and the resulting stage structure did not allow to distinguish generations. Changes in the prosome length of females seemed to be related to the advection of water masses with different temperatures rather than to different generations. It could not be clarified whether the strong increase of nauplii and adults after an inflow event of cold, saline North Sea water in the beginning of 2003 was a result of advection or improvement in habitat conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aro E (1989) A review of fish migration patterns in the Baltic. Rap P-V Reun Ciem 190:72–96

    Google Scholar 

  • Barz K, Hirche HJ (2005) Seasonal development of scyphozoan medusae and the predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic Sea). Mar Biol. DOI 10.1007/s00227-005-1572-2

  • Behrends G (1996) Long-term investigation of seasonal mesozooplankton dynamics in Kiel Bight, Germany. In: Proceedings of 13th Baltic Mar Biol Symp, Jurmala, Latvia, pp 93–98

  • Bollens SM, Frost BW (1989) Predator-induced diel vertical migration in a planktonic copepod. J Plankton Res 11:1047–1065

    Article  Google Scholar 

  • Bradley BP, Lane MA, Gonzalez CM (1992) A molecular mechanism of adaptation in an estuarine copepod. Neth J Sea Res 30:3–10

    Article  CAS  Google Scholar 

  • Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343

    Article  CAS  Google Scholar 

  • Cervetto G, Gaudy R, Pagano M (1999) Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J Exp Mar Biol Ecol 239:33–45

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of change in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Bourne Press Limited, Plymouth

  • Conover RJ, Gustavson KR (1999) Sources of urea in arctic seas: zooplankton metabolism. Mar Ecol Prog Ser 179:41–54

    Article  CAS  Google Scholar 

  • Conover RJ, Siferd TD (1993) Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 46:303–311

    Article  Google Scholar 

  • Corkett CJ, McLaren IA (1978) The biology of Pseudocalanus. Adv Mar Biol 15:1–231

    Google Scholar 

  • Dahmen K (1995) Vertikalverteilung und produktionsbiologische Bedeutung des Mesozooplank- tons im Bornholm-Becken (Südliche Ostsee). Berichte aus dem Institut für Meereskunde an der Universität Kiel Nr. 273:175

  • Devreker D, Souissi S, Seuront L (2004) Development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature. J Exp Mar Biol Ecol 303:31–46

    Article  Google Scholar 

  • Dippner JW, Kornilovs G, Sidrevics L (2000) Long-term variability of mesozooplankton in the Central Baltic Sea. J Mar Syst 25:23–32

    Article  Google Scholar 

  • Dippner JW, Hänninen J, Kuosa H, Vuorinen I (2001) The influence of climate variability on zooplankton abundance in the Northern Baltic Archipelago Sea (SW Finland). ICES J Mar Sci 58:569–578

    Article  Google Scholar 

  • Eiane K, Ohman MD (2004) Stage-specific mortality of Calanus finmarchicus, Pseudocalanus elongatus and Oithona similis on Fladen Ground, North Sea, during a spring bloom. Mar Ecol Prog Ser 268:183–193

    Article  Google Scholar 

  • Feistel R, Nausch G, Matthäus W, Hagen E (2003a) Temporal and spatial evolution of the Baltic deep water renewal in spring 2003. Oceanologia 45:623–642

    Google Scholar 

  • Feistel R, Nausch G, Mohrholz V, Lysiak-Pastuszak E, Seifert T, Matthäus W, Kruger S, Hansen IS (2003b) Warm waters of summer 2002 in the deep Baltic Proper. Oceanologia 45:571–592

    Google Scholar 

  • Feistel R, Nausch G, Matthäus W, Lysiak-Pastuszak E, Seifert T, Hansen IS, Mohrholz V, Krüger S, Buch E, Hagen E (2004) Backround data to the exceptionally warm inflow into the Baltic Sea in late summer of 2002. Mar Sci Rep 58:1–59

    Google Scholar 

  • Flinkman J, Vuorinen I, Aro E (1992) Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Can J Fish Aquat Sci 49:73–77

    Article  Google Scholar 

  • Fortier M, Fortier L, Hattori H, Saito H, Legendre L (2001) Visual predators and the vertical migration of copepods under Arctic sea ice during the midnight sun. J Plankton Res 23:1263–1278

    Article  Google Scholar 

  • Frost BW (1989) A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can J Zool 67:525–551

    Article  Google Scholar 

  • Goolish EM, Burton RS (1989) Energetics of osmoregulation in an intertidal copepod: Effects of anoxia and lipid reserves on the pattern of free amino acid accumulation. Funct Ecol 3:81–89

    Article  Google Scholar 

  • Hattori H, Saito H (1997) Diel changes in vertical distribution and feeding activity of copepods in ice-covered Resolute Passage, Canadian Arctic, in spring 1992. J Mar Syst 11:205–219

    Article  Google Scholar 

  • Hernroth L (1985) Recommendations on methods for marine biological studies in the Baltic Sea: Mesozooplankton Biomass Assessment. Baltic Mar Biol 10:1–32

    Google Scholar 

  • Hernroth L, Ackefors H (1979) The zooplankton of the Baltic proper: a long-term investigation of the fauna, its biology and ecology. Report Fish Bd Sweden, Inst Mar Res 2:1–160

    Google Scholar 

  • Hinrichsen HH, Möllmann C, Voss R, Köster FW, Kornilovs G (2002) Biophysical modelling of larval Baltic cod (Gadus morhua) growth and survival. Can J Fish Aquat Sci 12:1858–1873

    Article  Google Scholar 

  • Hinrichsen H, Lehmann A, Möllmann C, Schmidt J (2003) Dependency of larval fish survival on retention/dispersion in food limited environments: the Baltic Sea as a case study. Fish Oceanport 12:425–433

    Article  Google Scholar 

  • Huntley M, Brooks ER (1982) Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar Biol 71:23–31

    Article  Google Scholar 

  • Kane J (1993) Variability of zooplankton biomass and dominant species abundance on Georges Bank, 1977–1986. Fish Bull 91:464–474

    Google Scholar 

  • Kimmel DG, Bradley BP (2001) Specific protein responses in the calanoid copepod Eurytemora affinis (Poppe, 1880) to salinity and temperature variation. J Exp Mar Biol Ecol 266:135–149

    Article  CAS  Google Scholar 

  • Klein Breteler WCM, Gonzalez SR (1988) Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species. Hydrobiologia 167/168:201–210

    Article  Google Scholar 

  • Klein Breteler WCM, Gonzalez SR, Schogt N (1995) Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar Ecol Prog Ser 119:99–110

    Article  Google Scholar 

  • Kontula T, Väinölä R (2003) Relationships of Palearctic and Nearctic ‘glacial relict’ Myoxocephalus sculpins from mitochondrial DNA data. Mol Ecol 2003 12:3179–3184

    Article  Google Scholar 

  • Kornilovs G, Sidrevics L, Dippner JW (2001) Fish and zooplankton interaction in the Central Baltic Sea. ICES J Mar Sci 58:579–588

    Article  Google Scholar 

  • Koski M, Breteler WCM, Schogt N (1998) Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus. Mar Ecol Prog Ser 170:169–187

    Article  Google Scholar 

  • Köster FW, Schnack D (1994) The role of predation on early life stages of cod in the Baltic. Dana 10:179–201

    Google Scholar 

  • Launiainen J, Matthäus W, Fonselius S, Francke E (1987) Hydrography (Baltic Sea). First Periodic Assessment of the state of the marine environment of the Baltic Sea area, 1980–1985. Balt Sea Environ Proc 17B:7–34

    Google Scholar 

  • Lazzeretto-Colombera I (1970) Effects of dilution on some population parameters in different geographical populations of Tisbe holothuriae Humes (Harpacticoida). Oceanogr Limnl 16:263–274

    Google Scholar 

  • Marcus NH, Richmond C, Sedlacek C, Miller G, Oppert C (2004) Impact of hypoxia on the survival and fecundity of Acartia tonsa Dana. J Exp Mar Biol Ecol 301:111–128

    Article  Google Scholar 

  • Matthäus W, Franck H (1992) Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12:1375–1400

    Article  Google Scholar 

  • Matthäus W, Schinke H (1994) Mean atmospheric circulation patterns associated with major Baltic inflows. Dtsch Hydrogr Z 46:321–339

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • McLaren IA, Laberge E, Corkett CJ, Sévigny JM (1989) Life cycles of four species of Pseudocalanus in Nova Scotia. Can J Zool 67:552–558

    Article  Google Scholar 

  • Möllmann C, Köster FW (1999) Food consumption by clupeids in the Central Baltic: evidence for top-down control?. ICES J Mar Sci 56:100–113

    Article  Google Scholar 

  • Möllmann C, Köster FW (2002) Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res 24:959–978

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the Central Baltic Sea. J Plankton Res 22:2015–2038

    Article  Google Scholar 

  • Möllmann C, Schmidt JO, Temming A, Herrmann JP, Flöter J, Sell A (2002) Video Plankton Recorder reveals environmental problems of marine copepod. Int GLOBEC Newslett 8.2:20–21

    Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster F, Hinrichsen H (2003) The marine copepod Pseudocalanus elongatus as a mediator between climate variability and fisheries in the Central Baltic Sea. Fish Oceanogr 12:360–368

    Article  Google Scholar 

  • Norrbin MF (1996) Timing of diapause in relation to the onset of winter in the high-latitude copepods Pseudocalanus acuspes and Acartia longiremis. Mar Ecol Prog Ser 142 (1–3):99–109

    Article  Google Scholar 

  • Ohman MD (1985) Resource satiated population growth of the copepod Pseudocalanus sp. Adv Limnol 21:15–32

    Google Scholar 

  • Ojaveer E, Lumberg A, Ojaveer H (1998) Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES J Mar Sci 55:748–755

    Article  Google Scholar 

  • Richter C (1995) Seasonal changes in the vertical distribution of mesozooplankton in the Greenland Sea Gyre (75 degree N): Distribution strategies of calanoid copepods. ICES J Mar Sci 52:533–539

    Article  Google Scholar 

  • Roddie BD, Leakey RJG, Berry AJ (1984) Salinity-temperature tolerance and osmoregulation in Eurytemora affinis (Poppe)(Copepoda, Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the fourth estuary. J Exp Mar Biol Ecol 303:31–46

    Google Scholar 

  • Runge JA, Ingram RG (1991) Under-ice feeding and diel migration by the planctonic copepods Calanus glacialis and Pseudocalanus minutus in relation to the ice algal production cycle in southeastern Hudson Bay, Canada. Mar Biol 108:217–225

    Article  Google Scholar 

  • Saito H, Hattori H (1997) Diel vertical migration and feeding rhythm of copepods under sea ice at Saroma-ko Lagoon. J Mar Syst 11:191–204

    Article  Google Scholar 

  • Sedlacek C (2003) The Effect hypoxia has on feeding and egg production rates of Acartia tonsa Dana 1849 (Copepoda: Calanoida). Thesis, Florida State University ETD‘s URN: etd-11172003–151712, p 38

  • Siferd TD, Conover RJ (1992) Natural history of ctenophores in the Resolute Passage area of the Canadian High Arctic with special reference to Mertensia ovum. Mar Ecol Prog Ser 86:133–144

    Article  Google Scholar 

  • Stalder LC, Marcus NH (1997) Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods. Mar Biol 127:599–607

    Article  Google Scholar 

  • Vanderploeg HA, Gardner WS, Parrish CC, Liebig JR, Cavaletto JF (1992) Lipids and life cycle strategy of a hypolimnic copepod in Lake Michigan. Limnol Oceanogr 37:413–424

    Article  CAS  Google Scholar 

  • Vanderploeg HA, Cavaletto JF, Liebig JR, Gardner WS (1998) Limnocalanus macrurus retains a marine arctic lipid and life cycle strategy in Lake Michigan. J Plankton Res 20:1581–1597

    Article  CAS  Google Scholar 

  • Vidal J (1980) Physioecology of zooplankton: II Effects of phytoplankton concentration, temperature and body size on the metabolic rates Calanus pacificus and Pseudocalanus sp. Mar Biol 56:135–146

    Article  Google Scholar 

  • Viitasalo M (1992) Mesozooplankton of the Gulf of Finland and northern Baltic proper—a review of monitoring data. Ophelia 35:147–168

    Article  Google Scholar 

  • Viitasalo M, Flinkman J, Viherluoto M (2001) Zooplanktivory in the Baltic Sea: A comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Mar Ecol Prog Ser 216:191–200

    Article  Google Scholar 

  • Voss R, Köster FW, Dickmann M (2003) Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fish Res 63:97–111

    Article  Google Scholar 

  • Vuorinen I, Hänninen J, Kornilovs G (2003) Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Prog Oceanogr 59:339–356

    Article  Google Scholar 

  • Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plankton Res 21:2309–2321

    Article  Google Scholar 

Download references

Acknowledgements

We thank the crews of R.V. Alkor, R.V. Heincke and R.V. A.v.Humboldt and all cruise participants involved in collecting the samples. This work was funded by GLOBEC Germany, BMBF 03F0320D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Renz.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renz, J., Hirche, HJ. Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution. Marine Biology 148, 567–580 (2006). https://doi.org/10.1007/s00227-005-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0103-5

Keywords

Navigation