Skip to main content
Log in

The genome sequence of the giant phototrophic gammaproteobacterium Thiospirillum jenense gives insight into its physiological properties and phylogenetic relationships

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In a conserved culture of the purple sulfur bacterium Thiospirillum jenense DSM216T, cells of this species were easily recognized by cell morphology, large-size spirilla and visible flagellar tuft. The Tsp. jenense genome is 3.22 Mb in size and has a GC content of 48.7 mol%. It was readily identified as a member of the Chromatiaceae by the complement of proteins in its genome. A whole genome comparison clearly placed Tsp. jenense near Thiorhodovibrio and Rhabdochromatium species and somewhat more distant from Thiohalocapsa and Halochromatium species. This relationship was also found with the sequences of the photosynthetic reaction center protein PufM. The genome sequence supported important properties of this bacterium: the presence of ribulose-bisphosphate carboxylase and enzymes of the Calvin cycle of autotrophic carbon dioxide fixation but the absence of carboxysomes, an incomplete tricarboxylic acid cycle and the lack of malate dehydrogenase, the presence of a sulfur oxidation pathway including adenylylsulfate reductase (aprAB) but absence of assimilatory sulfate reduction, the presence of hydrogenase (hoxHMFYUFE), nitrogenase and a photosynthetic gene cluster (pufBALMC). The FixNOP type of cytochrome oxidase was notably lacking, which may be the reason that renders the cells highly sensitive to oxygen. Two minor phototrophic contaminants were found using metagenomic binning: one was identified as a strain of Rhodopseudomonas palustris and the second one has an average nucleotide identity of 82% to the nearest neighbor Rhodoferax antarcticus. It should be considered as a new species of this genus and Rhodoferax jenense is proposed as the name.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Fromsma K, Gerdes S, Glass EM, Kabul M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parello B, Push GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(75):1

    Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple Rubisco forms in Proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541

    Article  CAS  Google Scholar 

  • Briée C, Moreira D, López-García P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227

    Article  Google Scholar 

  • Buder J (1915) Zur Kenntis des Thiospirillum jenense und seiner Reaktion auf Lichtreize. JB Bot 56:29–584

    Google Scholar 

  • Buder J (1919) Zur Biologie des Bacteriopurpurins und der Purpurbakterien. JB Bot 58:525–628

    CAS  Google Scholar 

  • Caldwell DE, Tiedje JM (1975) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21:377–385

    Article  CAS  Google Scholar 

  • Ehrenberg CG (1838) Die Infusionstierchen als vollkommene Organismen. L. Voss-Verlag, Leipzig

    Book  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic Press., NewYork, pp 117–132

    Google Scholar 

  • Imhoff JF (2016) New dimensions in microbial ecology – Functional genes in studies to unravel the biodiversity and role of functional microbial groups in the environment. Microorganisms 4(2):19. https://doi.org/10.3390/microorganisms4020019

    Article  PubMed Central  Google Scholar 

  • Imhoff JF, Meyer TE, Kyndt JA (2020) Genomic and genetic sequence information of strains assigned to the genus Rhodopseudomonas reveal the great heterogeneity of the group and identify strain Rhodopseudomonas palustris DSM 123T as the true type strain of this species. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.004077

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  Google Scholar 

  • Mandel M, Leadbetter ER, Pfennig N, Trüper HG (1971) Deoxyribonucleic acid base compositions of phototrophic bacteria. Int J Syst Bacteriol 21:222–230

    Article  Google Scholar 

  • Neumann S, Wynen A, Trüper HG, Dahl C (2000) Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol Biol Rep 27:27–33

    Article  CAS  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2014) Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  Google Scholar 

  • Paterek JR, Paynter MJ (1988) Populations of anaerobic phototrophic bacteria in a Spartina alterniflora salt marsh. Appl Environ Microbiol 54:1360–1364

    Article  CAS  Google Scholar 

  • Pfennig N (1963) Thiospirillum jenense (Thiorhodaceae)— Lokomotion und phototaktisches Verhalten. IWF. https://doi.org/10.3203/IWF/E-678

    Article  Google Scholar 

  • Pfennig N (1993) Reflections of a microbiologist, or how to learn from the microbes. Annu Rev Microbiol 47:1–29

    Article  CAS  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  Google Scholar 

  • Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929-931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Schlegel HG (1956) Vergleichende untersuchungen über die lichtempfindlichkeit einiger purpurbakterien. Arch Protistenkde 101:69–97

    Google Scholar 

  • Schlegel HG, Pfennig N (1961) Die anreicherungskultur einiger schwefelpurpurbakterien. Arch Mikrobiol 38:1–39

    Article  CAS  Google Scholar 

  • Schmidt K (1963) Carotenoids in Thiorhodaceae. II. Carotenoid composition of Thiospirillum jenense Winogradsky and Chromatium vinosum Winogradsky. Arch Mikrobiol 46:127–137

    Article  CAS  Google Scholar 

  • Schmidt K, Pfennig N, Liaaen Jensen S (1965) Carotenoids of Thiorhodaceae. IV. The carotenoid composition of 25 pure isolates. Arch Mikrobiol 52:132–146

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont JJSB (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  Google Scholar 

  • Stamatakis AJB (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  Google Scholar 

  • Tabita FR, McFadden BA (1974) D-ribulose 1, 5-diphosphate carboxylase from Rhodospirillum rubrum. II. Quaternary structure, composition, catalytic and immunological properties. J Biol Chem 249:3459–3464

    Article  CAS  Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV rubisco proteins from the three kingdoms of life provide clues about rubisco evolution and structure/function relationships. J Experim Bot 59:1515–1524

    Article  CAS  Google Scholar 

  • Tank M, Thiel V, Imhoff JF (2009) Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Intern Microbiol 12:175–185

    CAS  Google Scholar 

  • Tank M, Blümel M, Imhoff JF (2011) Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol Ecol 78:428–438

    Article  CAS  Google Scholar 

  • Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF (2010) Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile). Evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 74:510–522

    Article  CAS  Google Scholar 

  • Van Niel CB (1932) On the morphology and physiology of the purple and green sulfur bacteria. Arch Mikrobiol 3:1–112

    Article  Google Scholar 

  • Van Niel CB (1955) The microbe as a whole. In: Waksman SA (ed) Perspectives and horizons in microbiology. Rutgers University Press, New Brunswick, NJ, pp 3–12

    Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to patric, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  CAS  Google Scholar 

  • Weissgerber T, Zigann R, Bruce D, Chang Y, Detter JC, Han C, Hauser L, Jeffries CD, Land M, Munk AC, Tapia R, Dahl C (2011) Complete genome sequence of Allochromatium vinosum DSM 180T. Stand Genomic Sci 5:311–330

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winogradsky SN (1888) Beiträge zur Morphologie und Physiologie der Schwefelbakterien, Leipzig, Arthur Felix, pp 1–120

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imhoff, J.F., Meyer, T.E. & Kyndt, J.A. The genome sequence of the giant phototrophic gammaproteobacterium Thiospirillum jenense gives insight into its physiological properties and phylogenetic relationships. Arch Microbiol 203, 97–105 (2021). https://doi.org/10.1007/s00203-020-02006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02006-7

Keywords

Navigation