Skip to main content
Log in

Constraining temporal variations in metal and sulfur sources using high-resolution mineral-scale analysis of pyrite: evidence from the Brothers volcano, Kermadec arc, New Zealand

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Variations in trace metal contents and sulfur isotope ratios (δ34S) within pyrite, at the scale of individual mineral grains, preserves a record of temporal fluctuations in the source of metals and sulfur as well as changes in the chemical composition and temperature of hydrothermal fluid during the evolution of the Brothers volcano, Kermadec arc, New Zealand. In this study, we analyzed pyrite from drill core recovered from two geochemically distinct hydrothermal systems at the Brothers volcano, the seawater-influenced NW Caldera (Site U1530) and magmatic-volatile-dominated Upper Cone (Site U1528) during the International Ocean Discovery Program’s Expedition 376. At the NW Caldera site, from 189 m below the seafloor, a seawater-derived hydrothermal fluid forming chlorite-rich alteration overprints early pyrophyllite + illite alteration. Within ~ 30 m of the seafloor at this same site, pyrite contains zones of high As content with a variable δ34S signature that ranges from -4.5 to 3.4‰ (n = 26). Values for δ34S > 0‰ record shallow mixing of seawater with upwelling hydrothermal fluids. In deeper parts of the system, but still within the chlorite-rich alteration zone, δ34S values > 0‰ are absent, indicating that relatively more sulfur is contributed from magmatic volatile degassing and SO2 disproportionation. In the pyrophyllite-rich alteration zone, pyrite contains Co-enriched cores that correspond to sharp changes in δ34S values from -5.3‰ to 4.6‰ (n = 68). Cobalt enrichment occurs in response to the mixing of seawater-derived hydrothermal fluid with Co-rich magmatic brines. At the Upper Cone site, a relatively constant supply of a low-salinity magmatic fluid results in pyrite grains that rarely exhibit any internal zonation in trace metal content. In pyrite where zonation does exist, a correlation between Cu and Sb and uniformly low δ34S values (< 0‰) indicates a link between metal enrichment, the pulsed degassing of magmatic volatiles, and SO2 disproportionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akinfiev NN, Zotov AV (2010) Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar. Geochem Int 48:714–720

    Article  Google Scholar 

  • Baker ET (1995) Characteristics of hydrothermal discharge following a magmatic intrusion. Geol Soc Spec Pub 87:65–76

    Article  Google Scholar 

  • Baker ET (1998) Patterns of event and chronic hydrothermal venting following a magmatic intrusion: new perspectives from the 1996 Gorda Ridge eruption. Deep Sea Res Part II: Top Stud Oceanogr 45:2599–2618

    Article  Google Scholar 

  • Baker ET, Walker SL, Embley RW, de Ronde CEJ (2012) High-Resolution Hydrothermal Mapping of Brothers Caldera. Kermadec Arc Econ Geol 107(8):1583–1593

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and Formation of Black Smoker Chimneys from Brothers Submarine Volcano, Kermadec Arc. Econ Geol 107:1613–1633

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Ryan CG, McNeill AW, Howard DL, Gemmell JB, Danyushevsky LV (2019) Trace Element Mapping of Copper- and Zinc-Rich Black Smoker Chimneys from Brothers Volcano, Kermadec Arc, Using Synchrotron Radiation XFM and LA-ICP-MS. Econ Geol 114:67–92

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1984) The critical point and two-phase boundary of seawater, 200–500°C. Earth Planet Sci Lett 68:172–180

    Article  Google Scholar 

  • Blundy J, Afanasyev A, Tattitch B, Sparks S, Melnik O, Utkin I, Rust A (2021) The economic potential of metalliferous sub-volcanic brines. R Soc Open Sci 8:202192

    Article  Google Scholar 

  • Brandl PA, Portnyagin M, Zeppenfeld H, Tepley FJ III, Timm C, Hauff F, Garbe-Schönberg D, Bousquet R (2023) The Origin of Magmas and Metals at the Submarine Brothers Volcano, Kermadec Arc, New Zealand. Econ Geol. https://doi.org/10.5382/econgeo.4973

    Article  Google Scholar 

  • Breuer C, Pichler T (2013) Arsenic in marine hydrothermal fluids: Source, fate and environmental implications. Chem Geol 348:2–14

    Article  Google Scholar 

  • Brueckner SM, Piercey SJ, Layne GD, Piercey G, Sylvester PJ (2015) Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(−Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada. Miner Deposita 50:619–640

    Article  Google Scholar 

  • Butler IB, Nesbitt RW (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet Sci Lett 167:335–345

    Article  Google Scholar 

  • Butterfield DA, Massoth GJ (1994) Geochemistry of north Cleft segment vent fluids: Temporal changes in chlorinity and their possible relation to recent volcanism. J Geophys Res Solid Earth 99:4951–4968

    Article  Google Scholar 

  • Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806

    Article  Google Scholar 

  • Caratori Tontini F, de Ronde CEJ, Yoerger D, Kinsey J, Tivey M (2012) 3-D focused inversion of near-seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. J Geophys Res Solid Earth 117:B10102

    Article  Google Scholar 

  • Caratori Tontini F, Tivey MA, de Ronde CEJ, Humphris SE (2019) Heat Flow and Near-Seafloor Magnetic Anomalies Highlight Hydrothermal Circulation at Brothers Volcano Caldera, Southern Kermadec Arc, New Zealand. Geophys Res Lett 46:8252–8260

    Article  Google Scholar 

  • Cox SF (1987) Flow mechanisms in sulphide minerals. Ore Geol Rev 2:133–171

    Article  Google Scholar 

  • Cox SF, Etheridge MA, Hobbs BE (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ Geol 76:2105–2117

    Article  Google Scholar 

  • Von Damm KL (2013) Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids. In: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Volume 91, Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (ed.) American Geophysical Union, pp. 222–247

  • de Ronde CEJ, Faure K, Bray CJ, Chappell DA, Wright IC (2003) Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner Deposita 38:217–233

    Article  Google Scholar 

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand. Econ Geol 100:1097–1133

    Article  Google Scholar 

  • de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, TakaI K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner Deposita 46:541–584

    Article  Google Scholar 

  • de Ronde CEJ, Humphris SE, Höfig TW, Reyes AG, Expedition 376 Science Party (2019a) Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano. Geology 47:762–766

    Article  Google Scholar 

  • Diehl A, de Ronde CEJ, Bach W (2020) Subcritical Phase Separation and Occurrence of Deep-Seated Brines at the NW Caldera Vent Field, Brothers Volcano: Evidence from Fluid Inclusions in Hydrothermal Precipitates. Geofluids 2020:8868259

    Article  Google Scholar 

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Article  Google Scholar 

  • Embley RW, de Ronde CEJ, Merle SG, Davy B, Tontini FC (2012) Detailed Morphology and Structure of an Active Submarine Arc Caldera: Brothers Volcano, Kermadec Arc. Econ Geol 107:1557–1570

    Article  Google Scholar 

  • Fallick AE, Boyce AJ, McConville P (2012) Sulphur stable isotope systematics in diagenetic pyrite from the North Sea hydrocarbon reservoirs revealed by laser combustion analysis. Isot Environ Health Stud 48:144–165

    Article  Google Scholar 

  • Fox CG, Radford WE, Dziak RP, Lau T-K, Matsumoto H, Schreiner AE (1995) Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone `arrays. Geophys Res Lett 22:131–134

    Article  Google Scholar 

  • Fuchs S, Hannington MD, Petersen S (2019) Divining gold in seafloor polymetallic massive sulfide systems. Miner Deposita 54:789–820

    Article  Google Scholar 

  • Gemmell JB, Sharpe R, Jonasson IR, Herzig PM (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Econ Geol 99:1711–1725

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochemistry 2:143–161

    Article  Google Scholar 

  • Grant HLJ, Hannington MD, Petersen S, Frische M, Fuchs SH (2018) Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem Geol 498:45–71

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, de Ronde CEJ, Heinrich CA (2012) Fluid-Flow Patterns at Brothers Volcano, Southern Kermadec Arc: Insights from Geologically Constrained Numerical Simulations. Econ Geol 107:1595–1611

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrodynamic modeling of magmatic–hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet Sci Lett 404:307–318

    Article  Google Scholar 

  • Haase KM, Stroncik N, Garbe-Schönberg D, Stoffers P (2006) Formation of island arc dacite magmas by extreme crystal fractionation: An example from Brothers Seamount, Kermadec island arc (SW Pacific). J Volcanol Geotherm Res 152:316–330

    Article  Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littelton, Colorado, USA, pp 111–141

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Hedenquist JW, Aoki M, Shinohara H (1994) Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano. Geology 22:585–588

    Article  Google Scholar 

  • Heijlen W, Franceschi G, Duhayon C, Van Nijen K (2021) Assessing the adequacy of the global land-based mine development pipeline in the light of future high-demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co). Resour Policy 73:102202

    Article  Google Scholar 

  • Heinrich CA, Eadington PJ (1986) Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits. Econ Geol 81:511–529

    Article  Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115

    Article  Google Scholar 

  • Herzig PM, Hannington MD, Arribas A (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Miner Deposita 33:226–237

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Hutchison W, Finch AA, Boyce AJ (2020) The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. Geochim Cosmochim Acta 288:176–198

    Article  Google Scholar 

  • Janecky DR, Shanks WC (1988) Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Canad Mineral 26:805–825

    Google Scholar 

  • Johnson HP, Hutnak M, Dziak RP, Fox CG, Urcuyo I, Cowen JP, Nabelek J, Fisher C (2000) Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407:174–177

    Article  Google Scholar 

  • Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745

    Article  Google Scholar 

  • Keith M, Haase KM, Klemd R, Smith DJ, Schwarz-Schampera U, Bach W (2018) Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc. Contrib to Mineral Petrol 173:40

    Article  Google Scholar 

  • Keith M, Haase KM, Chivas AR, Klemd R (2022) Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochim Cosmochim Acta 329:185–205

    Article  Google Scholar 

  • Kleint C, Bach W, Diehl A, Fröhberg N, Garbe-Schönberg D, Hartmann JF, de Ronde CEJ, Sander SG, Strauss H, Stucker VK, Thal J, Zitoun R, Koschinsky A (2019) Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc. Chem Geol 528:119289

    Article  Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307

    Article  Google Scholar 

  • Lee HY, Seo J-H, de Ronde CEJ, Heinrich CA (2022) Fluid Inclusion Evidence for Subseafloor Magmatic-Hydrothermal Processes at Brothers Volcano, Kermadec Arc, New Zealand. Econ Geol. https://doi.org/10.5382/econgeo.4884

    Article  Google Scholar 

  • Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881

    Article  Google Scholar 

  • Liu W, McPhail DC (2005) Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chem Geol 221:21–39

    Article  Google Scholar 

  • Liu W, Borg SJ, Testemale D, Etschmann B, Hazemann J-L, Brugger J (2011) Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440°C and 600bar: An in-situ XAS study. Geochim Cosmochim Acta 75:1227–1248

    Article  Google Scholar 

  • Luhr JF, Logan MAV (2002) Sulfur isotope systematics of the 1982 El Chichón trachyandesite: an ion microprobe study. Geochim Cosmochim Acta 66:3303–3316

    Article  Google Scholar 

  • Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochemistry 10:373–389

    Article  Google Scholar 

  • Mandeville CW, Sasaki A, Saito G, Faure K, King R, Hauri E (1998) Open-system degassing of sulfur from Krakatau 1883 magma. Earth Planet Sci Lett 160:709–722

    Article  Google Scholar 

  • Marini L, Moretti R, Accornero M (2011) Sulfur Isotopes in Magmatic-Hydrothermal Systems, Melts, and Magmas. Rev Mineral Geochem 73:423–492

    Article  Google Scholar 

  • Marques AFA, Barriga FJAS, Scott SD (2007) Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Mar Geol 245:20–39

    Article  Google Scholar 

  • Martin AJ, Keith M, Parvaz DB, McDonald I, Boyce AJ, McFall KA, Jenkin GRT, Strauss H, MacLeod CJ (2019) Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite. Cyprus Chem Geol 531:119325

    Article  Google Scholar 

  • Martin AJ, Jamieson JW, de Ronde CEJ, Humphris SE, McDonald I, Layne GD, Piercey G, MacLeod CJ (2022) Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brotehrs volcano, Kermadec arc, New Zealand. Mineral Deposita. https://doi.org/10.1007/s00126-022-01135-x

    Article  Google Scholar 

  • Martin AJ, Jamieson JW, de Ronde CEJ, Humphris SE, Roberts S, MacLeod CJ, Cai Y, Zhang C, Schlict EM, Nozaki T (2022) Hydrothermal alteration within the Brothers submarine arc volcano, Kermadec arc, New Zealand. Econ Geol. https://doi.org/10.5382/econgeo.4962

    Article  Google Scholar 

  • Massoth GJ, Butterfield DA, Lupton JE, McDuff RE, Lilley MD, Jonasson IR (1989) Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge. Nature 340:702–705

    Article  Google Scholar 

  • McDermott JM, Ono S, Tivey MK, Seewald JS, Shanks WC, Solow AR (2015) Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochim CosmochimActa 160:169–187

    Article  Google Scholar 

  • McKibben MA, Eldridge CS (1990) Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition; a SHRIMP study of the Valles Caldera, New Mexico. EconGeol 85:1917–1925

    Article  Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279

    Article  Google Scholar 

  • Migdisov A, Zezin D, Williams-Jones AE (2011) An experimental study of Cobalt (II) complexation in Cl− and H2S-bearing hydrothermal solutions. Geochim Et Cosmochim Acta 75:4065–4079

    Article  Google Scholar 

  • Monecke T, Petersen S, Hannington MD, Grant H, Samson I (2016) The minor element endowment of modern sea-floor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions. In: Verplanck PL, Hitzman MW (eds) Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Knoxville, pp 245–306

    Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Article  Google Scholar 

  • Palin JM, Xu Y (2000) Gilt by Association? Origins of Pyritic Gold Ores in the Victory Mesothermal Gold Deposit, Western Australia. Econ Geol 95:1627–1634

    Article  Google Scholar 

  • Patten CGC, Pitcairn IK, Alt JC, Zack T, Lahaye Y, Teagle DAH, Markdahl K (2020) Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc. Mineral Deposita 55:469–489

    Article  Google Scholar 

  • Peterson EC, Mavrogenes JA (2014) Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology 42:383–386

    Article  Google Scholar 

  • Pokrovski GS, Borisova AY, Bychkov AY (2013) Speciation and Transport of Metals and Metalloids in Geological Vapors. Rev Mineral Geochem 76:165–218

    Article  Google Scholar 

  • Reed MH, Palandri J (2006) Sulfide Mineral Precipitation from Hydrothermal Fluids. Rev Mineral Geochem 61:609–631

    Article  Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381

    Article  Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li J-W, Ma C-Q, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62

    Article  Google Scholar 

  • Román N, Reich M, Leisen M, Morata D, Barra F, Deditius AP (2019) Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim Cosmochim Acta 246:60–85

    Article  Google Scholar 

  • Rona PA, Hannington MD, Raman CV, Thompson G, Tivey MK, Humphris SE, Lalou C, Petersen S (1993) Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Econ Geol 88:1989–2017

    Article  Google Scholar 

  • de Ronde CEJ, Humphris SE, Höfig TW, and the Expedition 376 Scientists (2019b) Site U1528, Proceedings of the International Ocean Discovery Program 376, College Station, TX (International Ocean Discovery Program), p. 267

  • de Ronde CEJ, Humphris SE, Höfig TW, and the Expedition 376 Scientists (2019c) Site U1530, Proceedings of the International Ocean Discovery Program 376, College Station, TX (International Ocean Discovery Program), p. 267

  • Rye RO, Luhr JF, Wasserman MD (1984) Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichón Volcano, Chiapas, Mexico. J Volcanol Geotherm Res 23:109–123

    Article  Google Scholar 

  • Seyfried WE, Mottl MJ (1982) Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim Cosmochim Acta 46:985–1002

    Article  Google Scholar 

  • Seyfried WE, Seewald JS, Berndt ME, Ding K, Foustoukos DI (2003) Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. J Geophys Res Solid Earth 108:B9

    Article  Google Scholar 

  • Stucker VK, de Ronde CEJ, Laurence KJ, Phillips AM (2022) Rare Time Series of Hydrothermal Fluids for a Submarine Volcano: 14 Years of Vent Fluid Compositions for Brothers Volcano, Kermadec Arc New Zealand. Econ Geol. https://doi.org/10.5382/econgeo.4922

    Article  Google Scholar 

  • Tanner D, Henley RW, Mavrogenes JA, Holden P (2016) Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit. Chile Contrib to Mineral and Petrol 171:33

    Article  Google Scholar 

  • Timm C, de Ronde CEJ, Leybourne MI, Layton-Matthews D, Graham IJ (2012) Sources of Chalcophile and Siderophile Elements in Kermadec Arc Lavas. Econ Geol 107:1527–1538

    Article  Google Scholar 

  • Trefry JH, Butterfield DB, Metz S, Massoth GJ, Trocine RP, Feely RA (1994) Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge. J Geophys Res Solid Earth 49:4925–4935

    Article  Google Scholar 

  • Ueda A, Sakai H (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochim Et Cosmochim Acta 48:1837–1848

    Article  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679

    Article  Google Scholar 

  • Vanko DA, Bach W, Roberts S, Yeats CJ, Scott SD (2004) Fluid inclusion evidence for subsurface phase separation and variable fluid mixing regimes beneath the deep-sea PACMANUS hydrothermal field, Manus Basin back arc rift, Papua New Guinea. J Geophys Res Solid Earth 109:B03201

    Article  Google Scholar 

  • Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res Solid Earth 105:11203–11222

    Article  Google Scholar 

  • Von Damm KL, Oosting SE, Kozlowski R, Buttermore LG, Colodner DC, Edmonds HN, Edmond JM, Grebmeier JM (1995) Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375:47–50

    Article  Google Scholar 

  • Wang Y, Han X, Petersen S, Frische M, Qiu Z, Cai Y, Zhou P (2018) Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals 8:526

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41

    Article  Google Scholar 

  • Wysoczanski RJ, Handler MR, Schipper CI, Leybourne MI, Creech J, Rotella MD, Nichols ARL, WilsonCJN SRB (2012) The Tectonomagmatic Source of Ore Metals and Volatile Elements in the Southern Kermadec Arc. Econ Geol 107:1539–1556

    Article  Google Scholar 

  • Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383:420–423

    Article  Google Scholar 

  • Zotov AV, Shikina ND, Akinfiev NN (2003) Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochim Cosmochim Acta 67:1821–1836

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples provided by the International Ocean Discovery Program (IODP). We thank the crew and technical staff aboard the D/V JOIDES Resolution during Expedition 376: “Brothers Arc Flux”, May-July 5th, 2018. CdR acknowledges funding from the Ministry of Business, Innovation and Employment (MBIE) of the New Zealand Government by way of a GNS SSIF (Strategic Science Investment Fund) award. JWJ acknowledges the support of the Canadian Research Chair program. W Aylward is thanked for assistance whilst performing EPMA mapping. We thank V Maslennikov and an anonymous reviewer for their constructive comments and Editor-in-Chief K Kelley for the editorial handling of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AJM was responsible for the study conception and design. Material preparation, data collection and analysis was performed by AJM, GP and WA. The manuscript was written by AJM, and all authors provided comments on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrew J. Martin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: K. Kelley

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Supplementary file2 (PDF 40854 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.J., Jamieson, J.W., de Ronde, C.E.J. et al. Constraining temporal variations in metal and sulfur sources using high-resolution mineral-scale analysis of pyrite: evidence from the Brothers volcano, Kermadec arc, New Zealand. Miner Deposita 58, 1237–1262 (2023). https://doi.org/10.1007/s00126-023-01177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01177-9

Keywords

Navigation