Skip to main content
Log in

Genetische Anfälligkeit für Infektionen

Genetic susceptibility to infections

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Infektionserkrankungen zählen zu den führenden Ursachen für Morbidität und Mortalität weltweit. Die klinische Manifestation von Infektionserkrankungen ist sehr variabel; das Spektrum an Krankheitsverläufen reicht von asymptomatischen Infektionen und leichten Erkrankungen bis hin zu rasch progressiven und tödlichen Verläufen. Eine erbliche Komponente wurde zunächst in Zwillingsstudien gezeigt. Epidemiologische und genetische Studien konnten im Verlauf konkrete Gene und Polymorphismen für die meisten relevanten Infektionserkrankungen identifizieren. Verlässliche genetische Marker, die eine Empfänglichkeit oder Resistenz gegenüber Infektionen, die Krankheitsprogression und das Therapieansprechen prognostizieren, sind notwendig für die Definition von Risikopopulationen und die Therapieplanung. Genetische Untersuchungen können dazu beitragen, Zielstrukturen für neue Therapiestrategien und antimikrobielle Wirkstoffe zu finden. Die vorliegende Arbeit beschreibt den Einfluss genetischer Faktoren für einige wichtige Infektionserkrankungen und gibt Beispiele für eine erfolgreiche Umsetzung genetischer Forschung in die praktische Medizin.

Abstract

Infectious diseases are among the leading causes of morbidity and mortality worldwide. The spectrum of clinical manifestations of infections is highly variable, ranging from asymptomatic infection or mild illness to rapid progression of disease and death. Twin studies first showed an inheritable component of many infections and epidemiological and genetic studies revealed definite gene loci and polymorphisms for most of the clinically relevant infectious diseases. Reliable genetic markers which represent susceptibility or resistance to infections, prognosis of disease and response to treatment are necessary to define risk populations and to plan therapy regimens. Genetic research can also help in identifying target structures for novel therapy strategies and anitimicrobial agents. In this article the genetic background of important infections is reviewed and examples of successful exploitation of genetic findings and translation into practical medicine are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

ACE:

„angiotensin converting enzyme“

Aids:

„acquired immunodeficiency syndrome“

ATP:

Adenosintriphosphat

CCDC:

„coiled-coil domain containing“

CCL:

„C-C motif ligand chemokine“

CCR:

„C-C chemokine receptor“

CD:

„cluster of differentiation“

CDAC:

Clostridium difficile associated colitis“

CFH:

„complement factor H“

CTFR:

„cystic fibrosis membrane receptor“

DARC:

„Duffy antigen/receptor for chemokines“

DEFB:

„defensin beta“

EAEC:

enteroaggregative Escherichia coli

ESN:

„exposed sero-negative“

ETEC:

enterotoxische Escherichia coli

FUT:

“α-1,2-Fucosyltransferase“

G6PDH:

Glucose-6-Phosphat-Dehydrogenase

GWAS:

genomweite Assoziationsstudie

HBGA:

„histo-blood group antigens“

HBV:

Hepatitis-B-Virus

HIV:

humanes Immundefizienzvirus

HLA:

„human leukocyte antigen“

IL:

Interleukin

INF:

Interferon

KIR:

„killer cell immunoglobulin-like receptor“

LTNP:

„long term non-progressor“

MBL:

„mannose-binding lectin“

MCP:

„monocyte chemoattractant protein“

MHC:

„major histocompatibility complex“

MIP:

„macrophage inflammatory protein“

Mtb:

Mycobacterium tuberculosis

NF:

„nuclear factor“

NOD:

„nucleotide-binding oligomerization domain“

PARK:

Parkinson-Protein

PTPN:

„protein tyrosine phosphatase, non-receptor“

RANTES:

„regulated upon activation, normal T-cell expressed, and secreted“

RIPK:

„receptor-interacting serine-threonine kinase“

SLC:

„solute carrier“

SVR:

„sustained virological response“

TB:

Tuberkulose

TLR:

„Toll-like“-Rezeptor

TNF:

Tumor-Nekrose-Faktor

TNFSF:

„tumor necrosis factor superfamily“

VDR:

Vitamin-D-Rezeptor

Literatur

  1. Ali S, Vollaard AM, Kremer D et al (2007) Polymorphisms in proinflammatory genes and susceptibility to typhoid fever and paratyphoid fever. J Interferon Cytokine Res 27:271–279

    Article  PubMed  CAS  Google Scholar 

  2. Allison AC (1954) Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J 1:290–294

    Article  PubMed  CAS  Google Scholar 

  3. An P, Winkler CA (2010) Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet 26:119–131

    Article  PubMed  CAS  Google Scholar 

  4. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  PubMed  CAS  Google Scholar 

  5. Bedoya VI, Jaimes FA, Delgado JC et al (2008) Fetal-maternal HLA-A and -B discordance is associated with placental RNase expression and anti-HIV-1 activity. Curr HIV Res 6:380–387

    Article  PubMed  CAS  Google Scholar 

  6. Bellamy R, Beyers N, McAdam KP et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci U S A 97:8005–8009

    Article  PubMed  CAS  Google Scholar 

  7. Blanpain C, Lee B, Tackoen M et al (2000) Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood 96:1638–1645

    PubMed  CAS  Google Scholar 

  8. Bornman L, Campbell SJ, Fielding K et al (2004) Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis 190:1631–1641

    Article  PubMed  CAS  Google Scholar 

  9. Capoulade-Metay C, Ma L, Truong LX et al (2004) New CCR5 variants associated with reduced HIV coreceptor function in southeast Asia. AIDS 18:2243–2252

    Article  PubMed  CAS  Google Scholar 

  10. Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    PubMed  CAS  Google Scholar 

  11. Cooke GS, Campbell SJ, Sillah J et al (2006) Polymorphism within the interferon-gamma/receptor complex is associated with pulmonary tuberculosis. Am J Respir Crit Care Med 174:339–343

    Article  PubMed  CAS  Google Scholar 

  12. Cooke GS, Campbell SJ, Bennett S et al (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178:203–207

    Article  PubMed  CAS  Google Scholar 

  13. Diaz FJ, Vega JA, Patino PJ et al (2000) Frequency of CCR5 delta-32 mutation in human immunodeficiency virus (HIV) seropositive and HIV-exposed seronegative individuals and in general population of Medellin, Colombia. Mem Inst Oswaldo Cruz 95:237–242

    Article  PubMed  CAS  Google Scholar 

  14. Duggal P, Haque R, Roy S et al (2004) Influence of human leukocyte antigen class II alleles on susceptibility to Entamoeba histolytica infection in Bangladeshi children. J Infect Dis 189:520–526

    Article  PubMed  CAS  Google Scholar 

  15. Dunlap NE, Ballinger S, Reed T et al (1993) The use of monozygotic and dizygotic twins to estimate the effects of inheritance on the levels of immunoglobulin isotypes and antibodies to phosphocholine. Clin Immunol Immunopathol 66:176–180

    Article  PubMed  CAS  Google Scholar 

  16. Dunstan SJ, Stephens HA, Blackwell JM et al (2001) Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis 183:261–268

    Article  PubMed  CAS  Google Scholar 

  17. Dunstan SJ, Nguyen TH, Rockett K et al (2007) A TNF region haplotype offers protection from typhoid fever in Vietnamese patients. Hum Genet 122:51–61

    Article  PubMed  CAS  Google Scholar 

  18. Fatkenheuer G, Pozniak AL, Johnson MA et al (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 11:1170–1172

    Article  PubMed  Google Scholar 

  19. Fletcher GJ, Samuel P, Christdas J et al (2011) Association of HLA and TNF polymorphisms with the outcome of HBV infection in the South Indian population. Genes Immun:10.1038/gene.2011.32

    Google Scholar 

  20. Flores-Villanueva PO, Ruiz-Morales JA, Song CH et al (2005) A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 202:1649–1658

    Article  PubMed  CAS  Google Scholar 

  21. Flores J, DuPont HL, Lee SA et al (2008) Influence of host interleukin-10 polymorphisms on development of traveler’s diarrhea due to heat-labile enterotoxin-producing Escherichia coli in travelers from the United States who are visiting Mexico. Clin Vaccine Immunol 15:1194–1198

    Article  PubMed  CAS  Google Scholar 

  22. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  PubMed  CAS  Google Scholar 

  23. Flynn JL, Goldstein MM, Chan J et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    Article  PubMed  CAS  Google Scholar 

  24. Galvani AP, Novembre J (2005) The evolutionary history of the CCR5-Delta32 HIV-resistance mutation. Microbes Infect 7:302–309

    Article  PubMed  CAS  Google Scholar 

  25. Ge D, Fellay J, Thompson AJ et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez E, Bamshad M, Sato N et al (1999) Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci U S A 96:12004–12009

    Article  PubMed  CAS  Google Scholar 

  27. Hampe J, Grebe J, Nikolaus S et al (2002) Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 359:1661–1665

    Article  PubMed  CAS  Google Scholar 

  28. Hill AVS (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40:469–486

    Article  PubMed  CAS  Google Scholar 

  29. Hladik F, Liu H, Speelmon E et al (2005) Combined effect of CCR5-Delta32 heterozygosity and the CCR5 promoter polymorphism -2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J Virol 79:11677–11684

    Article  PubMed  CAS  Google Scholar 

  30. Holmner A, Askarieh G, Okvist M, Krengel U (2007) Blood group antigen recognition by Escherichia coli heat-labile enterotoxin. J Mol Biol 371:754–764

    Article  PubMed  CAS  Google Scholar 

  31. Jamieson SE, Miller EN, Black GF et al (2004) Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5:46–57

    Article  PubMed  CAS  Google Scholar 

  32. Jepson AP, Banya WA, Sisay-Joof F et al (1995) Genetic regulation of fever in Plasmodium falciparum malaria in Gambian twin children. J Infect Dis 172:316–319

    Article  PubMed  CAS  Google Scholar 

  33. Jiang ZD, Okhuysen PC, Guo DC et al (2003) Genetic susceptibility to enteroaggregative Escherichia coli diarrhea: polymorphism in the interleukin-8 promotor region. J Infect Dis 188:506–511

    Article  PubMed  CAS  Google Scholar 

  34. Jiang ZD, DuPont HL, Garey K et al (2006) A common polymorphism in the interleukin 8 gene promoter is associated with Clostridium difficile diarrhea. Am J Gastroenterol 101:1112–1116

    Article  PubMed  CAS  Google Scholar 

  35. Kallman FJ, Reisner D (1943) Twin studies on genetic variations in resistance to tuberculosis. J Hered 34:293–301

    Google Scholar 

  36. Kirkpatrick BD, Haque R, Duggal P et al (2008) Association between Cryptosporidium infection and human leukocyte antigen class I and class II alleles. J Infect Dis 197:474–478

    Article  PubMed  Google Scholar 

  37. Knudsen TB, Kristiansen TB, Katzenstein TL, Eugen-Olsen J (2001) Adverse effect of the CCR5 promoter −2459 A allele on HIV-1 disease progression. J Med Virol 65:441–444

    Article  PubMed  CAS  Google Scholar 

  38. Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 97:8560–8565

    Article  PubMed  CAS  Google Scholar 

  39. Liang X, Bi S, Yang W et al (2009) Epidemiological serosurvey of hepatitis B in China – declining HBV prevalence due to hepatitis B vaccination. Vaccine 27:6550–6557

    Article  PubMed  Google Scholar 

  40. Liaw YF, Chu CM (2009) Hepatitis B virus infection. Lancet 373:582–592

    Article  PubMed  CAS  Google Scholar 

  41. Lindesmith L, Moe C, Marionneau S et al (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553

    Article  PubMed  CAS  Google Scholar 

  42. Liu H, Chao D, Nakayama EE et al (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci U S A 96:4581–4585

    Article  PubMed  CAS  Google Scholar 

  43. Liu J, Fan D (2007) Hepatitis B in China. Lancet 369:1582–1583

    Article  PubMed  Google Scholar 

  44. Mahasirimongkol S, Yanai H, Nishida N et al (2009) Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10:77–83

    Article  PubMed  CAS  Google Scholar 

  45. Mallal S, Nolan D, Witt C et al (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359:727–732

    Article  PubMed  CAS  Google Scholar 

  46. Martineau AR, Wilkinson KA, Newton SM et al (2007) IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 178:7190–7198

    PubMed  CAS  Google Scholar 

  47. Martinson JJ, Hong L, Karanicolas R et al (2000) Global distribution of the CCR2–64I/CCR5–59653 T HIV-1 disease-protective haplotype. AIDS 14:483–489

    Article  PubMed  CAS  Google Scholar 

  48. Miller EN, Jamieson SE, Joberty C et al (2004) Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 5:63–67

    Article  PubMed  CAS  Google Scholar 

  49. Miller LH, Mason SJ, Dvorak JA et al (1975) Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189:561–563

    Article  PubMed  CAS  Google Scholar 

  50. Modi WS, Lautenberger J, An P et al (2006) Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV type 1 transmission and AIDS disease progression. Am J Hum Genet 79:120–128

    Article  PubMed  CAS  Google Scholar 

  51. Mohamed JA, Dupont HL, Flores J et al (2011) Single nucleotide polymorphisms in the promoter of the gene encoding the lipopolysaccharide receptor CD14 are associated with bacterial diarrhea in US and Canadian travelers to Mexico. Clin Infect Dis 52:1332–1341

    Article  PubMed  CAS  Google Scholar 

  52. Mohamed JA, DuPont HL, Jiang ZD et al (2007) A novel single-nucleotide polymorphism in the lactoferrin gene is associated with susceptibility to diarrhea in North American travelers to Mexico. Clin Infect Dis 44:945–952

    Article  PubMed  CAS  Google Scholar 

  53. Morris GA, Edwards DR, Hill PC et al (2011) Interleukin 12B (IL12B) genetic variation and pulmonary tuberculosis: a study of cohorts from The Gambia, Guinea-Bissau, United States and Argentina. PLoS One 6:e16656

    Article  PubMed  CAS  Google Scholar 

  54. Mummidi S, Bamshad M, Ahuja SS et al (2000) Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J Biol Chem 275:18946–18961

    Article  PubMed  CAS  Google Scholar 

  55. Newport MJ (2009) Why hasn’t human genetics told us more about tuberculosis? Int J Tuberc Lung Dis 13:1049–1050

    PubMed  Google Scholar 

  56. Newport MJ, Finan C (2011) Genome-wide association studies and susceptibility to infectious diseases. Brief Funct Genomics 10:98–107

    Article  PubMed  CAS  Google Scholar 

  57. Ometto L, Zanchetta M, Mainardi M et al (2000) Co-receptor usage of HIV-1 primary isolates, viral burden, and CCR5 genotype in mother-to-child HIV-1 transmission. AIDS 14:1721–1729

    Article  PubMed  CAS  Google Scholar 

  58. Raviglione MC, Snider DE Jr, Kochi A (1995) Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA 273:220–226

    Article  PubMed  CAS  Google Scholar 

  59. Rosenstiel P, Fantini M, Brautigam K et al (2003) TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124:1001–1009

    Article  PubMed  CAS  Google Scholar 

  60. Rueda PM de, Lopez-Nevot MA, Saenz-Lopez P et al (2011) Importance of host genetic factors HLA and IL28B as predictors of response to pegylated interferon and ribavirin. Am J Gastroenterol 106:1246-1254

    Article  PubMed  Google Scholar 

  61. Sabbe R, Picchio GR, Pastore C et al (2001) Donor- and ligand-dependent differences in C-C chemokine receptor 5 reexpression. J Virol 75:661–671

    Article  PubMed  CAS  Google Scholar 

  62. Samson M, Libert F, Doranz BJ et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  63. Schreiber S, Rosenstiel P, Albrecht M et al (2005) Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6:376–388

    Article  PubMed  CAS  Google Scholar 

  64. Selvaraj P, Chandra G, Jawahar MS et al (2004) Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on macrophage phagocytosis and lymphoproliferative response to mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol 24:523–532

    Article  PubMed  CAS  Google Scholar 

  65. Shaw MA, Collins A, Peacock CS et al (1997) Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuber Lung Dis 78:35–45

    Article  PubMed  CAS  Google Scholar 

  66. Smith MW, Dean M, Carrington M et al (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE study. Science 277:959–965

    Article  PubMed  CAS  Google Scholar 

  67. Stein CM, Baker AR (2011) Tuberculosis as a complex trait: impact of genetic epidemiological study design. Mamm Genome 22:91–99

    Article  PubMed  Google Scholar 

  68. Stewart GJ, Ashton LJ, Biti RA et al (1997) Increased frequency of CCR-5 delta 32 heterozygotes among long-term non-progressors with HIV-1 infection. The Australian Long-Term Non-Progressor Study Group. AIDS 11:1833–1838

    Article  PubMed  CAS  Google Scholar 

  69. Streeck H, Lichterfeld M, Alter G et al (2007) Recognition of a defined region within p24 gag by CD8 + T cells during primary human immunodeficiency virus type 1 infection in individuals expressing protective HLA class I alleles. J Virol 81:7725–7731

    Article  PubMed  CAS  Google Scholar 

  70. Strober W, Murray PJ, Kitani A, Watanabe T (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6:9–20

    Article  PubMed  CAS  Google Scholar 

  71. Suppiah V, Moldovan M, Ahlenstiel G et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104

    Article  PubMed  CAS  Google Scholar 

  72. Szebeni B, Szekeres R, Rusai K et al (2006) Genetic polymorphisms of CD14, toll-like receptor 4, and caspase-recruitment domain 15 are not associated with necrotizing enterocolitis in very low birth weight infants. J Pediatr Gastroenterol Nutr 42:27–31

    Article  PubMed  CAS  Google Scholar 

  73. Tan M, Jin M, Xie H et al (2008) Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. J Med Virol 80:1296–1301

    Article  PubMed  Google Scholar 

  74. Thomas DL, Thio CL, Martin MP et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801

    Article  PubMed  CAS  Google Scholar 

  75. Thursz M (2001) Genetic susceptibility in chronic viral hepatitis. Antiviral Res 52:113–116

    Article  PubMed  CAS  Google Scholar 

  76. Tournamille C, Colin Y, Cartron JP, Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228

    Article  PubMed  CAS  Google Scholar 

  77. UNAIDS (2009) AIDS epidemic update. UNAIDS/WHO, Geneva

  78. Vosse E van de, Ali S, Visser AW de et al (2005) Susceptibility to typhoid fever is associated with a polymorphism in the cystic fibrosis transmembrane conductance regulator (CFTR). Hum Genet 118:138–140

    Article  PubMed  Google Scholar 

  79. Viswanathan VK, Hodges K, Hecht G (2009) Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol 7:110–119

    PubMed  CAS  Google Scholar 

  80. Wang L, Wu XP, Zhang W et al (2011) Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control studies. PLoS One 6:e17608

    Article  PubMed  CAS  Google Scholar 

  81. Wilkinson RJ, Llewelyn M, Toossi Z et al (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355:618–621

    Article  PubMed  CAS  Google Scholar 

  82. World Health Organization (o.A.) World health statistics 2006. WHO Press, Geneva. http://www.who.int/whosis/whostat/2006/en/index.html

  83. Zapata W, Rodriguez B, Weber J et al (2008) Increased levels of human beta-defensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr HIV Res 6:531–538

    Article  PubMed  CAS  Google Scholar 

  84. Zhang FR, Huang W, Chen SM et al (2009) Genomewide association study of leprosy. N Engl J Med 361:2609–2618

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, S., Schreiber, S. Genetische Anfälligkeit für Infektionen. Internist 52, 1053–1060 (2011). https://doi.org/10.1007/s00108-011-2858-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-011-2858-8

Schlüsselwörter

Keywords

Navigation