Skip to main content
Log in

The Tsunami Inundation Hazard of the Maltese Islands (Central Mediterranean Sea): A Submarine Landslide and Earthquake Tsunami Scenario Study

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The tsunami hazard for the Maltese Islands is poorly defined, and historic records are available for only two recent events. Most of the population and touristic infrastructure of the archipelago is concentrated along the eastern low-lying coastline, which is exposed to tsunamis from near-field and far-field sources. In this study we present a scenario-based tsunami inundation study to assess the impact of potential significant cases. We simulated four scenarios—two submarine landslide sources (outer Malta Plateau slide and Gela Basin slide) and two earthquake sources mimicking events comparable to the 365 A.D. western Hellenic Arc event and the 1693 south-east of Sicily event. We find that all scenarios cause inundation in densely populated low-lying bays or rias of Mellieha Bay, Xemxija, Salini, Gzira, Msida, Marsaskala, St Thomas Bay, Marsaxlokk and Birzebbuga. The largest inundation extents and flow depths (> 10 m) are produced by the two landslide sources and the western Hellenic Arc earthquake. Of interest is the role of the Malta Escarpment and Sicily in amplifying and reflecting tsunami waves, and in generating consistent hot spots along the eastern coastline of Malta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Argnani, A., & Bonazzi, C. (2005). Malta Escarpment fault zone offshore eastern Sicily: Pliocene-quaternary tectonic evolution based on new multichannel seismic data. Tectonics. https://doi.org/10.1029/2004TC001656.

    Article  Google Scholar 

  • Baratta, M. (1910). La Catastrofe Sismica Calabro-Messinese (28 Dicembre 1908) [The Calabrio-Messinian seismic catastrophe (28 December 1908)]. Rome: Presso la Societa Geografica Italiana.

    Google Scholar 

  • Beavan, R. J., Wang, X., Holden, C., Wilson, K. J., Power, W. L., Prasetya, G., et al. (2010). Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009. Nature. https://doi.org/10.1038/nature09292.

    Article  Google Scholar 

  • Biolchi, S., Furlani, S., Antonioli, F., Baldassini, N., Causon Deguara, J., Devoto, S., Di Stefano, A., Evans, J., Gambin, T., Gauci, R., Mastronuzzi, G., Monaco, C., & Scicchitano, G. (2016). Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nature Hazards Earth Systems Science. https://doi.org/10.5194/nhess-16-737-2016.

  • Borg, R. P., D’Amico, S., & Galea, P. (2016). Earthquake and people: The maltese experience of the 1908 Messina earthquake. In S. D’Amico (Ed.), Earthquakes and Their Impact on Society. Earthquakes and their Impact on Society (pp. 533–562). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Camilleri, D. H. (2006). Tsunami construction risks in the Mediterranean—Outlining Malta’s scenario. Disaster Prevention Management An International Journal. https://doi.org/10.1108/09653560610654301.

    Article  Google Scholar 

  • Cho, Y. S. (1995). Numerical simulations of tsunami and runup. [PhD thesis]. Ithaca, (NY): Cornell University.

  • Civile, D., Lodolo, E., Accettella, D., et al. (2010). The Pantelleria graben (Sicily Channel, Central Mediterranean): An example of intraplate “passive” rift. Tectonophysics. https://doi.org/10.1016/j.tecto.2010.05.008.

    Article  Google Scholar 

  • D’Addezio, G., & Valensise, G. (1993). Metodologie per l’individuazione della struttura sismogenetica responsabile del terremoto del 13 dicembre 1990, in Contributi allo studio del terremoto della Sicilia Orientale del 13 dicembre 1990, Edited by E. Boschi and A. Basili, Int. Rep. 537, pp. 115–125, Ist. Naz. di Geofis., Rome.

  • De Martini, P. M., Barbano, M. S., & Pantosti, D., et al. (2012) Geological evidence for paleotsunamis along eastern Sicily (Italy): An overview. Nature Hazards Earth Systems Science. https://doi.org/10.5194/nhess-12-2569-2012.

  • De Soldanis, G. P. F. A. (1746). Il Gozo Antico-Moderno e Sacro-Profano (Gozo, Ancient & Modern, Religious & Profane). Rabat, Gozo. (In Italian) Unpublished. In National Library of Malta, Libr.145.

  • Drago, A., Azzopardi, J., Gauci, A., Tarasova, R., & Bruschi, A. (2013) Assessing the offshore wave energy potential for the Maltese Islands. Institute of Sustainable Energy, University of Malta, Annual Conference, 21st March 2013, Qawra, Malta.

  • Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering,133(6), 442–454.

    Article  Google Scholar 

  • Faccenna, C., Funiciello, F., Giardini, D., & Lucente, P. (2001). Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth and Planetary Science Letters. https://doi.org/10.1016/S0012-821X(01)00280-1.

    Article  Google Scholar 

  • Flemming, N. C. (1978). Holocene eustatic changes and coastal tectonics in the northeast mediterranean: Implications for models of crustal consumption. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. https://doi.org/10.1098/rsta.1978.0065.

    Article  Google Scholar 

  • Foglini, F., Dalla Valle, G., Micallef, A., Berndt, C., Campiani, E., & Trincardi, F. (2011). Seafloor instability and mass wasting processes along the eastern Gela slope. In: Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. D. Chaytor, M.C. Strasser (Eds.), 5th international symposium on submarine mass movements and their consequences, Kyoto, Japan.

  • Foglini, F., Prampolini, M., Micallef, A., Angeletti, L., Vandelli, V., Deidun, A., Soldati, M., Taviani, M. (Eds.), (2016). Late Quaternary coastal landscape morphology and evolution of the Maltese Islands (Mediterranean Sea) reconstructed from high-resolution seafloor data. Geology and Archaeology: Submerged Landscapes of the Continental Shelf, 411. Geological Society of London.

  • Gailler, A., Schindelé, F., & Hébert, H. (2016). Impact of Hellenic Arc Tsunamis on Corsica (France). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-016-1365-1.

    Article  Google Scholar 

  • Galea, P. (2007). Seismic history of the Maltese islands and considerations on seismic risk. Annales Geophysicae. https://doi.org/10.4401/ag-3053.

    Article  Google Scholar 

  • Galli, P. (2005). I terremoti del gennaio 1117. Ipotesi di un epicentro nel cremonese. Quaterly,22, 207–234.

    Google Scholar 

  • Gerardi, F., Smedile, A., Pirrotta, C., et al. (2012) Geological record of tsunami inundations in Pantano Morghella (south-eastern Sicily) both from near and far-field sources. Nature Hazards Earth Systems Science. https://doi.org/10.5194/nhess-12-1185-2012.

  • Goda, K., Li, S., Mori, N., & Yasuda, T. (2015). Probabilistic tsunami damage assessment considering stochastic source models: Application to the 2011 Tohoku earthquake. Coastal Engineering Journal,57(03), 1550015.

    Article  Google Scholar 

  • Goes, S., Jenny, S., Hollenstein, C., et al. (2004). A recent tectonic reorganization in the south-central Mediterranean. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2004.07.038.

    Article  Google Scholar 

  • Griffin, J., Latief, H., Kongko, W., et al. (2015). An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Frontiers in Earth Science,3, 32.

    Article  Google Scholar 

  • Gutscher, M. A., Dominguez, S., De Lepinay, B. M., et al. (2016). Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics. https://doi.org/10.1002/2015TC003898.

    Article  Google Scholar 

  • Gutscher, M. A., Roger, J., Baptista, M. A., et al. (2006). Source of the 1963 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane. Geophysical Research Letters. https://doi.org/10.1029/2005GL025442.

    Article  Google Scholar 

  • Illies, J. H. (1981). Graben formation—The Maltese Islands—A case history. Tectonophysics. https://doi.org/10.1016/0040-1951(81)90182-7.

    Article  Google Scholar 

  • Kamigaichi, O., Saito, M., Doi, K., et al. (2009). Earthquake early warning in Japan: Warning the general public and future prospects. Seismological Research Letters. https://doi.org/10.1785/gssrl.80.5.717.

    Article  Google Scholar 

  • Lindstrøm, E. K. (2016). Waves generated by subaerial slides with various porosities. Coastal Engineering,116, 170–179. https://doi.org/10.1016/j.coastaleng.2016.07.001.

    Article  Google Scholar 

  • Liu, P. L. F., Cho, Y. S., Briggs, M. J., Synolakis, C. E., & Kanoglu, U. (1995). Run-up of solitary waves on circular island. Journal of Fluid Mechanics,302, 259–285.

    Article  Google Scholar 

  • Liu, P. L. F., Cho, Y. S., & Fujima, K. (1994a). Numerical solutions of three-dimensional run-up on a circular island. In: Isaacson M, Quick M, editors. Proceedings of international symposium: Waves—Physical and numerical modelling; 1994 Aug 21–24; Vancouver, Canada. Vancouver (BC): University of British Columbia (pp. 1031–1040).

  • Liu, P. L. F., Cho, Y. S., Yoon, S. B., & Seo, S. N. (1994b). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In M. I. El-Sabh (Ed.), Recent development in tsunami research (pp. 99–115). Dordrecht (NL): Kluwer Academic Publishers.

    Google Scholar 

  • Liu, Y. R., Wang, X., Wu, Z., He, Z., & Yang, Q. (2018). Simulation of landslide-induced surges and analysis of impact on dam based on stability evaluation of reservoir bank slope. Landslides. https://doi.org/10.1007/s10346-018-1001-5.

    Article  Google Scholar 

  • Liu, P. L. F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Ithaca (NY): Cornell University (Cornell University Technical Report).

    Google Scholar 

  • Ma, G., Kirby, J. T., & Shi, F. (2013). Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling,69, 146–165. https://doi.org/10.1016/j.ocemod.2013.07.001.

    Article  Google Scholar 

  • Maesano, F. E., Tiberti, M. M., & Basili, R. (2017). The Calabrian Arc: Three-dimensional modelling of the subduction interface. Scientific Report. https://doi.org/10.1038/s41598-017-09074-8.

    Article  Google Scholar 

  • Magri, O. (2006). A geological and geomorphological review of the Maltese islands with special reference to the coastal zone. Territoris,6, 7–26.

    Google Scholar 

  • Matias, L. (2014). ASTARTE Assessment, STrategy And Risk Reduction for Tsunamis in Europe. http://www.astarte-project.eu/files/astarte/documents/deliverables/d2-9/D2.9-vs3-full.pdf. Accessed 12 Jan 2019.

  • Micallef, A., Berndt, C., & Debono, G. (2011). Fluid flow systems of the Malta Plateau, Central Mediterranean Sea. Marine Geology. https://doi.org/10.1016/j.margeo.2011.03.009.

    Article  Google Scholar 

  • Micallef, A., Camerlenghi, A., Georgiopoulou, A., Garcia-Castellanos, D., Gutscher, M. A., Lo Iacono, C., et al. (2019). Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea. Geomorphology,327, 264–283.

    Article  Google Scholar 

  • Micallef, A., Foglini, F., Le Bas, T., et al. (2013). The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to quaternary environmental change. Marine Geology. https://doi.org/10.1016/j.margeo.2012.10.017.

    Article  Google Scholar 

  • Micallef, A., Georgiopoulou, A., Mountjoy, J., et al. (2016). Outer shelf seafloor geomorphology along a carbonate escarpment: The eastern Malta Plateau, Mediterranean Sea. Continental Shelf Research,22, 22. https://doi.org/10.1016/j.csr.2016.11.002.

    Article  Google Scholar 

  • Minisini, D., Trincardi, F., Asioli, A., et al. (2007). Morphologic variability of exposed mass-transport deposits on the eastern slope of Gela Basin (Sicily channel). Basin Research. https://doi.org/10.1111/j.1365-2117.2007.00324.x.

    Article  Google Scholar 

  • Mottershead, D. N., Bray, M. J., & Soar, P. J. (2017). Tsunami landfalls in the Maltese archipelago: Reconciling the historical record with geomorphological evidence. In: Tsunamis: Geology, Hazards and Risks. Geological Society, London, Special Publications (p. 456).

  • Mottershead, D., Bray, M., Soar, P., & Farres, P. J. (2014). Extreme wave events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Zeitschrift für Geomorphol. https://doi.org/10.1127/0372-8854/2014/0129.

    Article  Google Scholar 

  • Mottershead, D. N., Bray, M. J., Soar, P. J., & Farres, P. J. (2015). Characterisation of erosional features associated with tsunami terrains on rocky coasts of the Maltese islands. Earth Surface Processing Landforms. https://doi.org/10.1002/esp.3784.

    Article  Google Scholar 

  • Mountjoy, J. J., Wang, X., Woelz, S., Fitzsimons, S., Howarth, J. D., Orpin, A. R., et al. (2018). Tsunami hazard from lacustrine mass wasting in Lake Tekapo, New Zealand. Subaqueous Mass Movements. New Zealand: Geological Society, London, Special Publications. https://doi.org/10.1144/SP477.21.

    Book  Google Scholar 

  • Mueller, C., Power, W., Fraser, S., & Wang, X. (2015). Effects of rupture complexity on local tsunami inundation: Implication for probabilistic tsunami hazard assessment by example. Journal of Geophysical Research,120(1), 488–502.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America,75(4), 1135–1154.

    Google Scholar 

  • Papadimitriou, E. E., & Karakostas, V. G. (2008). Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc. Acta Geophysica. https://doi.org/10.2478/s11600-008-0001-6.

    Article  Google Scholar 

  • Papadopoulos, G. (2009). Tsunamis. In J. C. Woodward (Ed.), The physical geography of the Mediterranean (pp. 483–512). Oxford: Oxford University Press.

    Google Scholar 

  • Papadopoulos, G. A., Gràcia, E., Urgeles, R., et al. (2014). Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology. https://doi.org/10.1016/j.margeo.2014.04.014.

    Article  Google Scholar 

  • Pedley, H. M., House, M. R., & Waugh, B. (1976). The geology of Malta and Gozo. Proceedings of the Geologists’ Association. https://doi.org/10.1016/S0016-7878(76)80005-3.

    Article  Google Scholar 

  • Piatanesi, A., & Tinti, S. (1998). A revision of the 1693 Sicily earthquake and tsunami. Geophysical Research Letters,103, 2749–2758.

    Article  Google Scholar 

  • Pirazzoli, P. A., Thommeret, J., Laborel, J., & Montaggioni, L. F. (1982). Crustal Block Movements from Holocene Shorelines: Crete and Antikythira (Greece). Tectonophysics. https://doi.org/10.1016/0040-1951(89)90105-4.

    Article  Google Scholar 

  • Polonia, A., Vaiani, S. C., & De Lange, G. J. (2016). Did the AD 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea? Geology. https://doi.org/10.1130/G37486.1.

    Article  Google Scholar 

  • Reuther, C. D., & Eisbacher, G. H. (1985). Pantelleria Rift—Crustal extension in a convergent intraplate setting. Geology Rundschau. https://doi.org/10.1007/BF01821214.

    Article  Google Scholar 

  • San Pedro, L., Babonneau, N., Gutscher, M. A., & Cattaneo, A. (2017). Origin and chronology of the Augias deposit in the Ionian Sea (Central Mediterranean Sea), based on new regional sedimentological data. Marine Geology. https://doi.org/10.1016/j.margeo.2016.05.005.

    Article  Google Scholar 

  • Shaw, B., Ambraseys, N. N., England, P. C., et al. (2008). Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geoscience. https://doi.org/10.1038/ngeo151.

    Article  Google Scholar 

  • Shaw, B., & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2010.04551.x.

    Article  Google Scholar 

  • Shimozono, T., Sato, S., Okayasu, A., Tajima, Y., Fritz, H. M., Liu, H., et al. (2012). Propagation and inundation characteristics of the 2011 Tohoku tsunami on the central Sanriku coast. Coastal Engineering Journal,54(01), 1250004.

    Article  Google Scholar 

  • Sørensen, M. B., Spada, M., Babeyko, A., et al. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysics Research Solid Earth. https://doi.org/10.1029/2010JB008169.

    Article  Google Scholar 

  • Stiros, S. C. (2010). The 8.5 + magnitude, AD365 earthquake in Crete: Coastal uplift, topography changes, archaeological and historical signature. Quaternary International. https://doi.org/10.1016/j.quaint.2009.05.005.

    Article  Google Scholar 

  • Stiros, S. C., & Drakos, A. (2006). A fault model for the tsunami-associated, magnitude ≥ 8.5 Eastern Mediterranean, AD 365 Earthquake. Zeitschrift für Geomorphol Suppl,216, 54–63.

    Google Scholar 

  • Tinti, S., Armigliato, A., Pagnoni, G., & Zaniboni, F. (2005). Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET Journal of Earthquake Technology,42(4), 171–188.

    Google Scholar 

  • Trincardi, F., & Argnani, A. (1990). Gela submarine slide: A major basin-wide event in the plio-quaternary foredeep of Sicily. Geo-Marine Letter. https://doi.org/10.1007/BF02431017.

    Article  Google Scholar 

  • Urgeles, R., & Camerlenghi, A. (2013). Submarine landslides of the Mediterranean Sea: Trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophysics Research Earth Surface. https://doi.org/10.1002/2013JF002720.

    Article  Google Scholar 

  • Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. [PhD thesis]. Ithaca, (NY): Cornell University. p. 245.

  • Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research,44(2), 147–154.

    Article  Google Scholar 

  • Wang, X., & Liu, P. L. F. (2007). Numerical simulation of the 2004 Indian Ocean tsunami—Coastal effects. Journal of Earthquake and Tsunami,1(3), 273–297.

    Article  Google Scholar 

  • Wang, X., Lukovic, B., Power, W. L., & Mueller, C. (2017a). High-resolution inundation modelling with explicit buildings. Lower Hutt (NZ): GNS Science. 27 p. (GNS Science report 2017/13), https://doi.org/10.21420/G2RW2N.

  • Wang, X., Mountjoy, J. J., Power, W. L., Lane, E. M., & Mueller, C. (2016). Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand. In: G. Lamarche et al. (Eds.) Submarine mass movements and their consequences: 7th international Symposium. Advances in natural and technological hazards research, p. 41.

  • Wang, X., & Power, W. L. (2011). COMCOT: A tsunami generation propagation and run-up model. GNS Science Report 2011/43.

  • Wang, X., Power, W. L., Lukovic, B., & Mueller, C. (2017b). Effect of explicitly representing building on tsunami inundation: A pilot study of Wellington CBD. Paper O3C.3 in: Next generation of low damage and resilient structures: New Zealand Society for Earthquake Engineering Annual Conference. Wellington, N.Z.: New Zealand Society for Earthquake Engineering.

  • Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. National Hazard Earth System,3, 391–402.

    Article  Google Scholar 

  • Wijetunge, J. J., Wang, X., & Liu, P. L. F. (2008). Indian ocean tsunami on 26 December 2004: Numerical modelling of inundation in three cities on the south coast of Sri Lanka. Journal of Earthquake and Tsunami,2(2), 133–155.

    Article  Google Scholar 

  • Yavari-Ramshe, S., & Ataie-Ashtiani, B. (2017). Subaerial landslide-generated waves: Numerical and laboratory simulations. In K. Sassa, M. Mikoš, & Y. Yin (Eds.), Advancing culture of living with landslides. WLF 2017. Cham: Springer.

    Google Scholar 

  • Yavari-Ramshe, S., & Ataie-Ashtiani, B. (2018). On the effects of landslide deformability and initial submergence on landslide-generated waves. Landslides,16, 37–53. https://doi.org/10.1007/s10346-018-1061-6.

    Article  Google Scholar 

Download references

Acknowledgements

We thank GNS Science in-house funding and the University of Malta Research Seed Fund for supporting this project financially. AM and DS are funded by EMODnet Bathymetry, which is financed by the European Union under Regulation 508/2014 of the European Parliament and of the Council of 15 May 2014 on the European Maritime and Fisheries Fund. We express our gratitude to Marco Taviani, Lorenzo Angeletti and the Planning Authority for providing access to data from the MEDCOR cruise (2009), DECORS cruise (2011) and ERDF project 156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Micallef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, C., Micallef, A., Spatola, D. et al. The Tsunami Inundation Hazard of the Maltese Islands (Central Mediterranean Sea): A Submarine Landslide and Earthquake Tsunami Scenario Study. Pure Appl. Geophys. 177, 1617–1638 (2020). https://doi.org/10.1007/s00024-019-02388-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02388-w

Keywords

Navigation