Skip to main content
Log in

Coralline algal maerl frameworks-Islands within the phaeophytic kelp belt

  • Published:
Facies Aims and scope Submit manuscript

Summary

In the subtropical belt highly productive ecosystems are formed by coral reefs in oligotrophic seas. Towards more eutrophic conditions, coral reefs diminish and are subsequently replaced by highly productive kelp forests. In high latitudes framework constructing carbonate production is enhanced by the growth of branching coralline algae which predominantly generate maerl-type deposits. On a global view, these coralline algal ecosystems show an island-like distribution pattern within the phaeophytic kelp belt. Compared to kelp ecosystems, coralline-algaldominated ecosystems have low rates of productivity. Therefore, it is reasonable to seek the pronounced competitive value of the extremely slow-growing corallines. Due to their low annual growth increment, the coralline algae studied are very endangered by abiotic physical disturbances and by overgrowth of rapidly growing filamentous algae or sessile invertebrates. To overcome fouling pressure and storm-triggered physical disturbances, coralline algae thrive well in wave-sheltered headlands or skerry areas and generate characteristic ‘denuded areas’ by intense herbivory. This general distributional pattern is also true for high-boreal to subarctic coralline algal bioherms in northern Norway. Such a complex biological feedback maintains a high potential of self-regulation or self-organization in the algal reef bioherms. The different proponents involved in feedback processes include bacterial colonization, diatom microfouling and selective induction of larval metamorphosis. The negative impact of diatom microfouling and the important role of herbivores are relevant activities in the feedback system on a microscopic scale. Macroscopically, intense herbivory on coralline algae create denuded conditions, which are a widespread phenomenon in coralline algal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, S. P. &DeLaca, T. E. (1987): Feeding adaptations of the foraminiferanCibicides refulgens living epizoically and parasitically on the antarctic scallopAdamussium colbecki.— Biol. Bull.,173, 136–159, Lancaster

    Google Scholar 

  • Bailey, A. &Bisalputra, T. (1970): A preliminary account of the application of thin-sectioning, freeze-etching, and scanning electron microscopy to the study of coralline algae.— Phycologia,9/1, 83–101, Oxford

    Google Scholar 

  • Bak, P. &Chen, K. (1991): Self-organized criticality.—Scientific American,1/91, 26–33, New York

    Google Scholar 

  • Barker, M. F. (1977): Observations on the settlement of the brachiolaria larvae ofStichaster australis (Verrill) andCoscinasterias calamaria (Gray) (Echinodermata: Asteroidea) in the laboratory and on the shore.—J. Exp. Mar. Biol. Ecol.,30, 95–108, Amsterdam

    Article  Google Scholar 

  • Barnes, J. R. &Gonor, J. J. (1973): The larval settling response of the lined chitonTonicella lineata.—Marine Biology,20, 259–264, Berlin

    Google Scholar 

  • Barnes, R. S. K., &Mann, K. H. (1980): Fundamentals of aquatic ecosystems—229 p., Oxford (Blackwell)

    Google Scholar 

  • Borowitzka, M. A. &Vesk, M. (1978): Ultrastructure of the Corallinaceae. I. The vegetative cells ofCorallina officinalis andC. cuvierii.—Marine Biology,46, 295–304, Amsterdam

    Article  Google Scholar 

  • Bosence, D. W. J. (1980): Sedimentary facies, production rates and facies models for recent coralline algal gravels, Co. Galway, Ireland.—Geol. J.,15/2, 91–111, Liverpool

    Article  Google Scholar 

  • Cabioch, J. (1969): Les fonds de maerl de la Baie de Morlaix et leur peuplement végétal.—Cahiers Biol. Mar.,10, 139–161, Paris

    Google Scholar 

  • Cabioch, J. (1988): Morphogenesis and generic concepts in coralline algae—a reappraisal.—Helgoländer wiss. Meeresuntersuchungen,42, 493–509, Hamburg

    Article  Google Scholar 

  • Cabioch, J. &Giraud, G. (1986): Structural aspects of biomineralization in the coralline algae (calcified Rhodophyceae).—In:Leadbetter, B. S. C. &Riding, R. (eds.): Biomineralization in lower plants and animals.—141–156, Oxford (Univ. Press)

    Google Scholar 

  • Carpenter, R. C. (1990): Competition among marine macroalgae: a physiological perspective.—J. Phycol.,26, 6–12, Baltimore

    Article  Google Scholar 

  • Chapman, A. R. O. (1981): Stability of sea-urchin dominated barren grounds following destructive grazing of kelp in St. Margaret’s Bay, Eastern Canada.—Marine Biology,62, 307–311, Amsterdam

    Article  Google Scholar 

  • Estes, J. A. &Steinberg, P. D. (1988): Predation, herbivory, and kelp evolution.—Paleobiology,14/1, 19–36, Chicago

    Google Scholar 

  • Farrow, G. E. &Clokie, J. (1979): Molluscan grazing of sublittoral algal-bored shells and the production of carbonate mud in the Firth of Clyde, Scotland.—Trans. Royal Soc. Edinburgh,70, 139–148, Edinburgh

    Google Scholar 

  • Freiwald, A. (1993): Subarktische Kalkalgenriffe im Spiegel hochfrequenter Meeresspiegelschwankungen und interner biologischer Steuerungsprozesse.—Geomar Report,21, Kiel (im Druck)

    Google Scholar 

  • Frewald, A. & Henrich, R.: Algal reefs beyond the Arctic Circle: their biological and sedimentary dynamics under extreme environmental seasonality.—submitted to Sedimentology

  • Freiwald, A., Henrich, R., Schäfer, P. &Willkomm, H. (1991): The significance of high-boreal to subarctic maerl deposits in northern Norway to reconstruct Holocene climatic changes and sea level oscillations.—Facies,25, 315–340, Erlangen

    Article  Google Scholar 

  • Garbary, D. &Veltkamp, C. J. (1980): Observations onMesophyllum lichenoides (Corallinaceae, Rhodophyta) with the scanning electron microscope.—Phycologia,19/1, 49–53, London

    Google Scholar 

  • Giese, M. A. (1991): Rezente Foraminiferen-Faunen im westlichen Ärmelkanal vor Roscoff (Frankreich), ihre Beeinflussung durch die besondere geographische Lage, Sedimentsubstrat und ökologische Faktoren.—Dissertation, Philipps-Universität, Marburg

    Google Scholar 

  • Giraud, G. &Cabioch, J. (1976): Étude ultrastructurale de l’activité des cellules superficielles du thalle des Corallinacées (Rhodophycées).—Phycologia,15/3–4, 405–414, London

    Google Scholar 

  • Giraud, G. &Cabioch, J. (1979): Ultrastructure and elaboration of calcified cell-walls in the coralline algae (Rhodophyta, Cryptonemiales).—Biologie Cellulaire,36/1, 81–86, Ivry

    Google Scholar 

  • Gray, J. S. (1977): The stability of benthic ecosystems.— Helgoländer wiss. Meeresuntersuchungen,30, 427–444, Hamburg

    Article  Google Scholar 

  • Hagen, N. T. (1983): Destructive grazing of kelp beds by sea urchins in Vestfjorden, northern Norway.—Sarsia,68, 177–190, Bergen

    Google Scholar 

  • Hagen, N. T. (1987): Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway.—Sarsia,72, 213–229, Bergen

    Google Scholar 

  • Hallock, P. (1988): The role of nutrient availability in bioerosion: consequences to carbonate buildups.—Palaeogeogr., Palaeoclim., Palaeoecol.,63, 275–291, Amsterdam

    Article  Google Scholar 

  • Hallock, P. &Schlager, W. (1986): Nutrient excess and the demise of coral reefs and carbonate platforms.—Palaois,1, 389–398, Tulsa

    Google Scholar 

  • Hessland, I. (1942): Über Massenvorkommen vonCorallina officinalis L..—Senckenbergiana lethaea,25, 19–40, Frankfurt. a.M

    Google Scholar 

  • Hughes, R. N. &Gliddon, C. J. (1991): Marine plants and their herbivores: coevolutionary myth and precarious mutualisms. —Phil. Trans. R. Soc. London,B 333, 231–239, London

    Article  Google Scholar 

  • James, N. P., Wray, J. L. &Ginsburg, R. N. (1988): Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of Late Paleozoic reefs and cements.—J. Sed. Petrol.,58/2, 291–303, Tulsa

    Google Scholar 

  • Jantsch, E. (1992): Die Selbstorganisation des Universums.—464 p., München, (Hanser)

    Google Scholar 

  • Johnson, C. R. &Mann, K. H. (1986): The crustose coralline alga,PhymatolithonFoslie, inhibits the overgrowth of seaweeds without relying on herbivores.—J. Exper. Marine Biol. Ecol.,96, 127–146, Amsterdam

    Article  Google Scholar 

  • Johnson, C. R., Sutton, D. C., Olson, R. R. &Giddins, R. (1991a): Settlement of crown-of-thorns starfish: role of bacteria on surfaces of coralline algae and a hypothesis for deepwater recruitment.—Marine Ecol. Progress Ser.,71, 143–162, Halstenbek

    Google Scholar 

  • Johnson, C. R., Muir, D. G. &Reysenbach, A. L. (1991b): Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae.—Marine Ecol. Progress Ser.,74, 281–294, Halstenbek

    Google Scholar 

  • Kauffman, S. A. (1991): Antichaos and adaptation.—Scientific American,8/91, 64–70, New York

    Google Scholar 

  • Koop, K., Newell, R. C. &Lucas, M. I. (1982): Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm.—Marine Ecol. Progress Ser.,7, 315–326, Halstenbek

    Google Scholar 

  • Kremer, B. P. (1981): Stoffwechselstrategie und Produktivität der großen Meeresalgen.—Naturwiss. Rundschau,33/4, 135–142, Braunschweig

    Google Scholar 

  • Kudrass, H.-R. (1974): Experimental study of nearshore transportation of pebbles with attached algae.—Marine Geology,16, M9-M12, Amsterdam

    Article  Google Scholar 

  • Laur, D. R., Ebeling, A. W. &Reed, D. C. (1986): Experimental evaluations of substrate types as barriers to sea urchin (Strongylocentrotus spp.) movement.—Marine Biology,93, 209–215, Amsterdam

    Article  Google Scholar 

  • Lees, A., Buller, A. T. &Scott, J. (1969): Marine carbonate sedimentation processes Connemara, Ireland.—Reading Univ. Geol. Reports,2, 1–63, Dublin

    Google Scholar 

  • Lemoine, P. (1910): Rèpartition et mode de vie du maerl (Lithothamnium calcareum) aux environs de Concarneau (Finistère). —Annales Inst. Oceanograph. Monaco,1, 1–28, Paris

    Google Scholar 

  • Levinton, J. S. (1982): Marine ecology.—526 p., New Jersey (Prentice Hall)

    Google Scholar 

  • Lewis, T. E., Garland, C. D. &McMeekin, T. A. (1985): The bacterial biota on crustose (nonarticulated) coralline algae from Tasmanian waters.—Microbial. Ecology,11, 221–230, Berlin.

    Article  Google Scholar 

  • Littler, M. M. &Littler, D. S. (1980): The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model.— American Naturalist,116/1, 25–44, Chicago

    Article  Google Scholar 

  • Littler, M. M. &Littler, D. S. (1984): Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky-intertidal system.—J. Exper. Marine Biol. Ecol.,74, 13–34, Amsterdam

    Article  Google Scholar 

  • Lüning, K. (1990): Seaweeds—Their environment, biogeography, and ecophysiology.—527 p., New York (Wiley)

    Google Scholar 

  • Lüning, K. &tom Dieck, I. (1990): The distribution and evolution of the Laminariales: North Pacific-Atlantic relationships.— In:Garbary, D. J. &South, G. R. (eds.): Evolutionary biogeography of the marine algae of the North Atlantic.— NATO ASI-Series,G22, 187–204, Berlin (Springer)

    Google Scholar 

  • Mann, K. H. (1977): Destruction of kelp-beds by sea-urchins: a cyclical phenomenon or irreversible degradation?—Helgoländer wiss. Meeresuntersuchungen,30, 455–467, Hamburg

    Article  Google Scholar 

  • Mann, K. H. (1982): Ecology of coastal waters: a systems approach. —322 p., Oxford (Blackwell)

    Google Scholar 

  • McIntire, C. D. &Moore, W. W. (1977): Marine littoral diatoms: ecological considerations.—In:Werner, D. (ed.): The biology of diatoms.—333–371, Berkeley, (University of California Press)

    Google Scholar 

  • Millson, C. &Moss, B. L. (1985): Ultrastructure of the vegetative thallus ofPhymatolithon lenormandii (Aresch. inJ. Ag.)Adey.—Botanica Marina,28, 123–132, Hamburg

    Google Scholar 

  • Morse, A. N. C. (1991): How do planktonic larvae know where to settle?—American Scientist,79/2, 154–167, New Haven

    Google Scholar 

  • Morse, A. N. C. &Morse, D. E. (1984): Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the molluscHaliotis rufescens.—Marine Biology,81, 293–298, Berlin

    Article  Google Scholar 

  • Møller, J. J. (1989): Geometric simulation and mapping of Holocene relative sea-level changes in northern Norway.—J. Coastal Research,5/3, 403–417, Fort Lauderdale

    Google Scholar 

  • Nicolis, G. &Prigogine, I. (1977): Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations.—New York, (Wiley Interscience)

    Google Scholar 

  • Noro, T., Masaki, T. &Akioka, H. (1983): Sublittoral distribution and reproductive periodicity of crustose coralline algae (Rhodophyta, Cryptonemiales) in southern Hokkaido.—Bull. Fac. Fish. Hokkaido Univ.,34, 1–10, Hakodate

    Google Scholar 

  • Nyholm, K.-G. (1961): Morphogenesis and biology of the foraminiferCibicides lobatulus.—Zoologiska Bidrag fran Uppsala,33, 157–196, Uppsala

    Google Scholar 

  • Pandolfi, J. M. (1992): A palaeobiological examination of the geological evidence for recurring outbreaks of the crown-of-thoms starfish,Acanthaster planci (L.).—Coral Reefs,11, 87–93, Berlin

    Article  Google Scholar 

  • Pianka, E. R. (1970): On r- and K-selection.—American Naturalist,104, 592–597, Chicago

    Article  Google Scholar 

  • Rose, F. L. &Cushing, C. E. (1970): Periphyton: autoradiography of zinc-65 adsorption.—Science,168, 576–577, Washington

    Article  Google Scholar 

  • Round, F. E. (1971): Benthic marine diatoms.—Oceanogr. Mar. Biol. Ann. Rev.,9, 83–139, London

    Google Scholar 

  • Sand-Jensen, K., Revsbach, N. P. &Jørgensen, B. B. (1985): Microprofiles of oxygen in epiphyte communities on submerged macrophytes.—Marine Biology,89, 55–62, Berlin

    Article  Google Scholar 

  • Scoffin, T. P. (1988): The environments of production and deposition of calcareous sediments on the shelf west of Scotland.— Sedimentary Geology,60, 107–124, Amsterdam

    Article  Google Scholar 

  • Stam, W. T., Bot, P. V. M., Boele-Bos, S. A., Rooji, J. M. van &Hoek, C. van den (1988): Single-copy DNA-DNA hybridizations among five species ofLaminaria (Phaeophyceae): phylogenetic and biogeographic implications.—Helgoländer wiss. Meeresuntersuchungen,42, 251–267, Hamburg

    Article  Google Scholar 

  • Steneck, R. S. (1982): A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. —Ecology,63/2, 507–522, Brooklyn

    Article  Google Scholar 

  • Steneck, R. S. (1983): Escalating herbivory and resulting adaptive trends in calcareous algal crusts—Paleobiology,9/1, 44–61, Chicago

    Google Scholar 

  • Steneck, R. S. (1985): Adaptations of crustose coralline algae to herbivory: patterns in space and time.—In:Toomey, D. F. &Nitecki, M. H. (eds.): Paleoalgology.—352–366, Berlin (Springer)

    Google Scholar 

  • Steneck, R. S. (1986): The ecology of coralline algal crusts: convergent patterns and adaptive strategies.—Ann. Rev. Ecol. Syst.,17, 273–303, Palo Alto

    Article  Google Scholar 

  • Steneck, R. S. (1990): Herbivory and the evolution of nongeniculate coralline algae (Rhodophyta, Corallinales) in the North Atlantic and North Pacific.—In:Garbary, D. J. & South, G. R. (eds.): Evolutionary biogeography of the marine algae of the North Atlantic.—NATO ASI-Series,G22, 107–129, Berlin (Berlin)

  • Steneck, R. S. (1992): Plant—herbivore coevolution: a reappraisal from the marine realm and its fossil record.—In:John, D. M., Hawkins, S. J. & Price, J. H. (eds.): Plant—animal interactions in the marine benthos.—The Systematics Association, Spec. Vol.,46, 477–491, Oxford

  • Steneck, R. S. &Adey, W. H. (1976): The role of environment in control of morphology inLithophyllum congestum, a Caribbean algal ridge builder.—Botanica Marina,19, 197–215, Hamburg

    Article  Google Scholar 

  • Steneck, R. S. &Watling, L. (1982): Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. —Marine Biology,68, 299–319, Amsterdam

    Article  Google Scholar 

  • Van der Laan, J. D. &Hogeweg, P. (1992): Waves of crown-of-thorns starfish outbreaks—where do they come from?—Coral Reefs,11, 207–213, Berlin

    Article  Google Scholar 

  • Walker, R. &Moss, B. (1984): Mode of attachment of six epilithic crustose Corallinaceae (Rhodophyta).—Phycologia,23/3, 321–329, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiwald, A. Coralline algal maerl frameworks-Islands within the phaeophytic kelp belt. Facies 29, 133–148 (1993). https://doi.org/10.1007/BF02536925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536925

Keywords

Navigation