Skip to main content
Log in

Factors controlling holocene reef growth: An interdisciplinary approach

  • Published:
Facies Aims and scope Submit manuscript

Summary

This interim report deals with investigations on key factors controlling reef growth by zoophysiologists, ecologists, paleontologists and geologists. The different levels of emphasis are the coral animal and the reef community. The main study area is the Red Sea which reaches over 20°C latitude up to the northernmost margin of the global coral reef belt. Supplementary results on microborer ecology are provided from the Bahamas.

The desert enclosed Red Sea, not influenced by land runoff and only minimally by anthropogenic (urban and touristic) nutrient inputs, is predestined for a study on the principal influence of light on calcification within bathymetrical and latitudinal gradients. Hence, on the level of the zooxanthellate scleractinian animal phototrophic and heterotrophic energy supply and its bearing on calcification are being measured in different coral species—in particular inPorites sp., one of the most important reef builders.

The growth of 15 zooxanthellate scleractinians in the Gulf of Aqaba correlates with the annual light cycle. This correlation is observable down to 40 m depth. Other growth promoting factors seem to have less influence on coral extension. The availability of organically enriched sediments in shallow water probably yields nutritional value, in particular for filter feeding species, thus restricting their distribution to those areas. Zooxanthellae, when isolated fromMycedium elephantotus, are different in their dependence on depth in maximum rates of photosynthesis and photosynthetic efficiency (-slope). Increasing concentrations of pigments as a function of depth could be determined. Maximum rates of photosynthesis of zooxanthellae in vivo, collected at corresponding depth, have been 4 times higher. Structural and physiological adaptations improving heterotrophic and phototrophic energy intake are highlighted.

Porites sp. was the subject of annual growth studies at locations extending from Aqaba in the North over the northern and southern Egyptian coast and islands, Sanganeb Atoll and Wingate reef offshore Sudan to the Gulf of Tadjoura in the Gulf of Aden (Djibouti). Mean growth rates in the shallow water zone increase with decreasing latitude and are highest at the southernmost studied reefs in the Gulf of Tadjoura. However, the observed latitutdinal growth reduction is restricted to the upper ca. 15 m of the water column. The upper limit of growth potential decreases with depth parallel to the decrease of light availability. Highest growth rates are recorded in shallow depth (10–2.9 mm yr−1). This zone reaches at Aqaba (29°30′N) to a depth of ca. 10 m. At the southern Egyptian reefs (24°30′N) this zone extends to ca. 15 m water depth. This effect is probably a result of the stronger reduction of winter light levels and water temperature in the northern regions. Compared to other oceans the decrease of growth with increasing latitude of Red SeaPorites corals is far less, and growth rates at Aqaba are the highest observed at these latttudes.

On the level of the community of reef inhabitants four principal topics are addressed:

The first one is the dynamics of the proportions of hermatypic and ahermatypic organisms and open space. The occurrence of stony and soft corals and the sharing of empty space in different reef sections at Aqaba and on Sanganeb Atoll were quantified. Soft corals, mainlySinularia- and xeniid species, occupy decreasing shares with depth. Among theXenia species a bathymetrical zonation pattern was detected.

The next issue is the growth impeding role of soft corals and gastropod parasites and predators on scleractinians. Experimental and field observations showed xeniid soft corals to be opportunistic i.e. occupying rapidly open space rather than to attacking and outcompeting stony corals. An increasingly specialized behaviour was detected among corallivorous gastropods of the family Coralliophilidae to exploit their coral hosts. Whereas these snails are more or less sessile and depend for a long time on the surrounding host polyps the mobileDrupella cornus (Thaididae) forms feeding aggregations which denude mainly branching corals on shallow reef parts.

Furthermore, the role counteracting reef growth of macro- and microbioeroders is investigated.Diadema setosum is a major destructive agent on reefs at Aqaba (not in the central Red Sea). The grazing sea urchins do not only keep potential colonization area free but also erode carbonate material (e. g. 1468 g/m2/year, 10 m depth). Demographic and bathymetric patterns in the sea urchin population are analyzed including their bearing on bioerosion of the reef. Investigations on microboring organisms in carbonate material have started in the Red Sea; initial results, however, are only available from similar studies near Lee Stocking Island, Bahamas.

Three major environments have been identified based on the distribution of the different microborers. These are

  1. 1)

    the intertidal environment dominated by boring cyanobacteria.,

  2. 2)

    reef sites from 2 to 30 m water depth dominated by a diverse assemblage of boring cyanobacteria and chlorophytes, and

  3. 3)

    the deep reef slope from 100 to 300 m dominated by boring green algae and heterotrophs.

The boring chlorophyte genusPhaeophila appears rapidly and dominates at sites from 2 to 30 m, but it leaves vacated borings and is replaced byOstreobium quekettii after 1 year. Different substrate types show very different rates of colonization by microborers. The greatest excavation rates (100 g/m2/3 months) occur in fine-grained limestone, while the slowest rates (0.5 g/m2/3 months) occur in calcite crystals. Molluscan shell material shows intermediate rates of excavation. Light conditions appear very important in determining the growth rate and distribution of different microborers between the sites, however, the interaction of light with other factors, such as substrate, time period of exposure, and water quality conditions may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aissaoui, D.M. (1985): Botryoidal aragonite and its diagenesis. —Sedimentology32, 345–361, Oxford

    Google Scholar 

  • Akpan, E.B. &Farrow, G.E. (1984): Shell-boring algae on the Scottish continental shelf: identification, distribution, bathymetric zonation.—Trans. roy. Soc. Edinburgh: Earth Sci.,75, 1–12, Edinburgh

    Google Scholar 

  • Alexandersson, E.T. (1972): Micritization of carbonate particles: processes of precipitation and dissolution in modern shallow-marine sediments.—Bull. geol. Inst. Univ. Uppsala,3, 201–236, Uppsala

    Google Scholar 

  • Alongi, D.M. (1988): Detritus in coral reef ecosytsems: fluxes and fates.—Proc. 6th Internat. Coral Reef Symp., Australia,1, 29–36

    Google Scholar 

  • Bak, R.P.M. (1990): Patterns of echinoid bioerosion in two Pacific coral reef lagoons.—Mar. Ecol. Prog. Ser.,66, 267–272

    Google Scholar 

  • Baker, P.A. &Weber, J.N. (1975): Coral growth rate: variation with depth.—Earth Planet. Sci. Lett.,27, 57–61, 1 Table, Amsterdam

    Google Scholar 

  • Barnes,D.J. &Chalker,B.E. (1990): Calcification and photosynthesis in reef-building corals and algae.—In:Dubinsky,Z. (ed.): Coral reefs.—109-131, Amsterdam (Elsevier)

  • Bathurst, R.G.C. (1966): Boring algae, micrite envelopes and lithification of molluscan biosparites.—Geol. J.,5, 15–32, Liverpool

    Google Scholar 

  • Bellwood, D.R. &Choat, J.H. (1990): A functional analysis of grazing in parrot fishes (family Scaridae): the ecological implications.—Environm. Biol. Fishes,28, 189–214, The Hague

    Google Scholar 

  • Benayahu, Y. &Loya, Y. (1977): Space partitioning by stony corals, soft corals and benthic algae on the coral reefs of the northern Gulf of Eilat (Red Sea).—Helgoländer wiss. Meeresunters.,30, 362–382, Hamburg

    Google Scholar 

  • Berner,T. (1993): Coral-reef algae.—In:Dubinsky,Z. (ed.): Coral Reefs.—Ecosystems of the World,25, 253-264, Elsevier, Amsterdam

  • Birkeland,C. (1989): The influence of echinoderms on coralreef communities.—In:Jangoux M.,Lawrence,J.M. (eds): Echinoderm studies, vol.3—p. 1-79, Rotterdam (Balkema)

  • Bosscher, H. (1992): Growth potential of coral reefs and carbonate platforms.—PhD. thesis, Vrije Universiteit Amsterdam: 1–157, 59 Figs., 7 Tables, Amsterdam

  • Bouchon, C., Jaubert, J., Montaggioni, L. &Pichon, M. (1981): Morphology and evolution of the coral reefs of the Jordanian coast of the Gulf of Aqaba (Red Sea).—Proc. 4th Int. Coral Reef Symp.,1, 559–565, Manila

    Google Scholar 

  • Bromley, R.G. (1978): Bioerosion of Bermudareefs.—Palaeogeogr. Palaeoclimatol. Palaeontology,23, 169–197, Amsterdam

    Google Scholar 

  • Bruggemann, J.H., van Kessel, A.M. & Breeman, A.M. (in press): Parrotfish bioerosion: implications of fish size, feeding mode and habitat use for the destruction of reef substrates. —Mar. Ecol. Progr. Ser.

  • Budd, D.A. &Perkins, R.D. (1980): Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments.—J. Sed. Petrol.,50, 881–904, Tulsa

    Google Scholar 

  • Buddemeier, R.W. &Kinzie, R.A. (1976): Coral growth.— Oceanogr. Mar. Biol. Ann. Rev.,14, 183–225, 1 Fig., 2 Tables, London

    Google Scholar 

  • Buddemeier, R.W., Maragos, J.E. &Knutson, D.W. (1974): Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth.—J. exp. mar. Biol. Ecol.,14, 179–200, 7 Figs., 4 Tables, Amsterdam

    Google Scholar 

  • Chalker, B.E., Barnes, D.J., Dunlap W.C. &Jokiel, P.L. (1988): Light and reef-building corals.—Interdiscipl. Sci. Rev.,13, 222–237, London

    Google Scholar 

  • Chang, S.S., Prezelin, B.B. &Trench, R.K. (1983): Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellateSymbiodinium microadriaticum.—Mar. Biol.,76, 219–229

    Google Scholar 

  • Chave, K.E., Smith, S.V. &Roy, K.J. (1972): Carbonate production by coral reefs.—Mar. Geol.,12 123–140, Amsterdam (Elsevier)

    Google Scholar 

  • Chazottes, V., Le Campion-Alsumard, T. &Peyrot-Clausade, M. (1994): A two years experimental study of rates of bioerosion on Moorea (French Polynesia): micro—macroborers —grazers interactions.—Proc. 7th Int. Coral Reef Symp.,1, p. 437, Guam

    Google Scholar 

  • Crossland, C.J., Hatcher, B.G. &Smith, S.V. (1991): Role of coral reefs in global ocean production.—Coral Reefs,10/2, 55–64, 2 Figs., 1 Table, Heidelberg

    Google Scholar 

  • Davies,P.J. (1983): Reef Growth.—In:Barnes,D.J. (ed.): Perspectives on coral Reefs.—69-106, Canberra (Clouston)

  • Dill, R.F. &Shinn, E.A., Jones, A.T., Kelly, K. &Steinen, R.P. (1986): Giant subtidal stromatolites forming in normal salinity waters.—Nature,324, 55–58, London

    Google Scholar 

  • Ducklow,H.W. (1990): The biomass, production and fate of bacteria in coral reefs.—In:Dubinsky,F. (ed.): Coral reefs. —265-289, Amsterdam (Elsevier)

  • Dustan, P. (1975): Growth and form in the reef-building coralMontastrea annularis.—Mar. Geol.,33, 101–107, Amsterdam

    Google Scholar 

  • Fagerstrom, J.A. (1987): The evolution of reef communities.— New York (Wiley)

    Google Scholar 

  • Falkowski, P.G. &LaRoche, J. (1991): Acclimation to spectral irradiance in algae.—J. Phycol., 27, 8–14

    Google Scholar 

  • Falkowski,P.G.,Jokiel,P.L. &Kinzie III,R.E. (1990): Irradiance and corals.—In:Dubinsky,Z. (ed.): Coral reefs.— 89-107, Amsterdam (Elsevier)

  • Fogg, G.E. (1983): The ecological significance of extracellular products of phytoplankton photosynthesis.—Bot. Mar.,26, 3–14

    Google Scholar 

  • Fredj, G. &Falconetti, C. (1977): Sur la présence d'algues filamenteuses perforantes dans le test desGryphus vitreus (Born) (Brachiopodes, Térébratulidés) de la limite inférieure du plateau continental méditerranéen.—C.R. Acad. Sc. Paris,284 (Série D), 1167–1170, Paris

    Google Scholar 

  • Fricke, H.W. &Knauer, B. (1986): Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone.— Oecologia,71, 29–37, 10 Figs., 4 Tables, Berlin

    Google Scholar 

  • Fricke, H.W. &Schuhmacher, H. (1983): The depth limits of Red Sea stony corals: an ecophysiological problem.—Mar. Ecol.,4, 163–194, Berlin

    Google Scholar 

  • Fricke, H.W., Vareschi, W. &Schlichter, D. (1987): Photoecology of the coral Leptoserisfragilis in the Red Sea twilight zone (an experimental study by submersible).—Mar. Biol.,89, 143–147

    Google Scholar 

  • Ginsburg R.N. &Schroeder, J.H. (1973): Growth and submarine fossilization of algal cup reefs, Bermuda.—Sedimentology,20, 575–614, Oxford

    Google Scholar 

  • Glaub, I. (1994): Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie).—Courier Forsch.-Inst. Senckenberg,174, 324 p., Frankfurt/M

  • Glynn, P.W., Wellington, G.M. &Birkeland C. (1979): Coral reef growth in the Galápagos: Limitation by sea urchins.— Science203, 47–49, Washington D.C.

    Google Scholar 

  • Golubic S., Brent, G. &Le Campion-Alsumard, T. (1970): Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting embedding technique.—Lethaia,3, 203–209, Oslo

    Google Scholar 

  • Golubic,S.,Perkins,R.D. &Lukas K.J. (1975): Boring microorganisms and microborings in carbonate substrates.—In:Frey,R.W. (ed): The study of trace fossils.—229-259, New York (Springer)

  • Golubic, S., Campbell, S.E. &Spaeth, C. (1983): Kunstharzausgüsse fossiler Mikroben-Bohrgänge.—Der Präparator,29, 197–200, Bochum

    Google Scholar 

  • Goreau, T.J. (1959): The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions.—Biol. Bull.,116, 59–75, 5 Figs., 4 Tables, Taichung

    Google Scholar 

  • Gravier, C. (1911): Les recifs de coreaux et les madreporairres de la Baie de Tadjourah: Gulf of Aden.—Annales de l'Institut Océanographique,2, 99, Paris

    Google Scholar 

  • Grigg, R.W. (1982): Darwin point: A threshold for atoll formation. —Coral Reefs,1, 29–34, 4 Figs., Heidelberg

    Google Scholar 

  • Hallock, P. &Schlager, W. (1986): Nutrient excess and the demise of coral reefs and carbonate platforms.—Palaios,1, 389–398, 2 Figs., Tulsa

    Google Scholar 

  • Harris, P.M., Halley, R.B., &Lukas, K.J. (1979): Endolith microborings and their preservation in Holocene-Pleistocene (Bahama-Florida) ooids.—Geology,7, 216–220, Boulder

    Google Scholar 

  • Hawkins, C.M. &Lewis J.B. (1982): Ecological energetics of the tropical sea urchinDiadema antillarum Philippi in Barbados, West Indies.—Estuar Coast Shelf Sci.15, 645–669

    Google Scholar 

  • Heiss, G.A. (1994): Coral reefs in the Red Sea: Growth, production and stable isotopes.—Ph.D. Thesis, University of Kiel, 1–137, 62 Figs., 30 Tables, Kiel

  • Heiss, G.A., Dullo, W.-Chr. &Reijmer, J.J.G. (1993): Short-and long-term growth history of massivePorites sp. from Aqaba (Red Sea).—Senckenbergiana maritima,23/4–6, 135–141, 3 Figs., 1 Table, Frankfurt

    Google Scholar 

  • Highsmith, R.C. (1979): Coral growth rates and environmental control of density banding.—J. Exp. Mar. Biol. Ecol.,37, 105–125

    Google Scholar 

  • — (1979): Coral growth rates and environmental control of density banding.—J. exp. mar. Biol. Ecol.,37, 105–125, 4 Figs., 6 Tables, Amsterdam

    Google Scholar 

  • — (1981): Lime-boring algae in hermatypic coral skeletons.— J. exp. mar. Biol. Ecol.,55, 267–281, Amsterdam

    Google Scholar 

  • Hiscox, J.D. &Israelstam, G.F. (1978): A method for extraction of chlorophyll from leaf tissue without maceration.— Can. J. Bot.,54, 1332–1334

    Google Scholar 

  • Houck, J.E., Buddemeier, R.W., Smith, S.V. &Jokiel, P.L. (1977): The response of coral growth rate and skeletal strontium content to light intensity and water temperature.— Proc. 3rd Int. Coral Reef Symp.,2, 425–431, 5 Figs., 2 Tables, Miami

    Google Scholar 

  • Hubbard, D.K. (1988): Controls of modern and fossil reef development: common ground for biological and geological research. —Proc. 6th Int. Coral Reef Symp.,1, 243–252

    Google Scholar 

  • Hubbard, D.K. &Scaturo, D. (1985): Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix, USVI.—Bull. Mar. Sci.,36/2, 325–338, 5 Figs., 3 Tables, Miami

    Google Scholar 

  • Hunter, I.G. (1977): Sediment production byDiadema antillarum on a Barbados fringing reef.—Proc. 3rd Int. Coral Reef Symp.,2, 105–109, Miami

    Google Scholar 

  • Huston, M. (1985): Variation in coral growth rates with depth at Discovery Bay, Jamaica.—Coral Reefs,4, 19–25, 1 Fig., 1 Table, Heidelberg

    Google Scholar 

  • Hutchings, P.A. (1986): Biological destruction of coral reefs. A review.—Coral Reefs,4, 239–252, Heidelberg

    Google Scholar 

  • Hutchings, P.A., Kiene, W.E., Cunningham, R.B., &Donnelly, C. (1992): Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef.— Coral Reefs,11, 23–31, Heidelberg

    Google Scholar 

  • Jeffrey, S. W. &Humphrey, G. F. (1975): New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton.—Biochem. Physiol. Pflanzen (BPP).,167, 191–194

    Google Scholar 

  • Johannes, R. E., Coles, S. L. &Kuenzel, N. T. (1970): The role of zooplankton in the nutrition of some scleractinian corals. —Limnol. Oceanogr.,15, 579–586

    Google Scholar 

  • Jokiel, P. L. (1988): Is photoadaptation a critical process in the development, function and maintenance of reef communities? —Proc. 6th Int. Coral Reef Symp., Australia,1, 187–192

    Google Scholar 

  • Jokiel, P. L., Maragos, J. E. & Franzisket, L., (1978): Coral growth: buoyant weight technique.—In:Stoddart, D. R. & Jahannes, R. E.: Coral reefs, research methods.—529–541 (Unesco)

  • Kaiser, P., Schlichter, D. &Fricke, H. W. (1993): Influence of light on algal symbionts of the deep water coralLeptoseris fragilis.—Mar. Biol.,117, 45–52

    Google Scholar 

  • Kanwisher, J.W. &Wainwright, S.A. (1967): Oxygen balance in some reef corals.—Biol. Bull.,133, 378–390, Woods Hole

    Google Scholar 

  • Kawaguti, S. (1970): Electron microscopy on the symbiotic algae in reef corals. Septieme Congres International De Microscopie Electronique.—Grenoble, 383–384

  • Kendall, C.G.St.C., Dill, R.F. &Shinn, E. (1990): Guidebook to the marine geology and tropical environments of Lee Stocking Island, the southern Exumas, Bahamas, 82 p., Caribbean Marine Research Centre, Riviera Beach, Florida

    Google Scholar 

  • Kiene, W.E. (1985): Biological destruction of experimental coral substrates at Lizard Island, Great Barrier Reef, Australia.— Proc. 5th Int. Coral Reef Symp.,5, 339–344, Tahiti

    Google Scholar 

  • — (1988): A model of bioerosion on the Great Barrier Reef.— Proc. 6th Int. Coral Reef Symp., 3, 449–454, Townsville

    Google Scholar 

  • Kiene, W.E. &Hutchings, P.A. (1994): Bioerosion experiments at Lizard Island, Great Barrier Reef.—Coral Reefs,13, 91–98, Heidelberg

    Google Scholar 

  • —— (1994): Long-term bioerosion of experimental coral substrates from Lizard Island, Great Barrier Reef.—Proc. 7th Int. Coral Reef Symp.,1, 397–403, Guam

    Google Scholar 

  • Klein, R. &Loya, Y. (1991): Skeletal growth and density patterns of two Porites corals from the Gulf of Eilat, Red Sea. —Mar. Ecol. Progr. Ser.,77, 253–259, 5 Figs., 3 Tables, Halstenbeck

    Google Scholar 

  • Klein, R., Pätzold, J., Wefer, G. &Loya Y. (1993): Depth-related timing of density band formation inPorites spp. corals from the Red Sea inferred from X-ray chronology and stable isotope composition.—Mar. Ecol. Progr. Ser.,97, 99–104, 2 Figs., Halstenbeck

    Google Scholar 

  • Kobluk,D.R. (1977): Calcification of filaments of boring and cavity-dwelling algae, and the construction of micrite envelopes. —In:Romans R.C. (ed): Geobotany.—195-207, New York (Plenum)

  • Kobluk, D.R. &Kahle, C.F. (1978): Geological significance of boring and cavity-dwelling marine algae.—Bull. Canad. Petr. Geol.,26, 362–379, Calgary

    Google Scholar 

  • Kobluk, D.R. &Risk, M.J. (1977): Rate and nature of infestation of a carbonate, substratum by a boring alga.—J exp. mar. Biol. Ecol.,27, 107–115, Amsterdam

    Google Scholar 

  • Kroll, D. K. (1990): Quatitative Analyse der Korallenbesielung eines Vorriffareals bei Aqaba (Rotes Meer).—Diploma Thesis, Universität Essen, 54 pp., Essen

  • Lamberts, A. E. (1978): Coral growth: alizarin method.—In:Stoddart, D. R. & Johannes, R. E. (eds.): Coral reefs: research methods.—523–527 (Unesco)

  • LeCampion-Alsumard, T. (1978): Les, cyanophycées endolithiques marines. Systématique, ultrastructure, écologie et biodestruction. —Thèse État. Univ. Aix-Marseille, 198 p., Marseille

  • Le Campion-Alsumard, T., Campbell, S.E. &Golubic, S. (1982): Endoliths and the depth of the photic zone-discussion.— J. Sed. Petrol.,52, 1333, Tulsa

    Google Scholar 

  • Lewis, J. B. (1976): Experimental tests of suspension feeding in Atlantic Reef Corals.—Mar. Biol.,36, 147–150, Berlin

    Google Scholar 

  • Logan, A. &Tomascik, T. (1991): Extension growth rates in two coral species from high-latitude reefs of Bermuda.—Coral Reefs,10/3, 155–160, 3 Figs., 4 Tables, Heidelberg

    Google Scholar 

  • Lukas, K.J. (1974): Two species of the chlorophyte genusOstreobium from skeletons of Atlantic and Caribbean corals. —J. Phycol.,10, 331–335, New York

    Google Scholar 

  • — (1978): Depth distribution and form among common microboring algae from the Florida continental shelf.—Geol. Soc. American. Abstracts with programs, 10, 448, New York

    Google Scholar 

  • — (1979): The effects of marine microphytes on carbonate substrata.—Scanning Electron Microscopy, II, 447–456, SEM Inc., AMF O'Hare, Illinois

    Google Scholar 

  • Markwell M. A. K., Haas, S. M., Bieber, L. L. &Tolbert, N. E. (1978): A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. —Anal. Biochem.,87, 206–210

    Google Scholar 

  • Marshall, N. (1978): Particulate organic carbon.—In:Stoddart, D. R. & Johannes, R. E. (eds.): Coral reefs: research methods.—409–411 (Unesco)

  • McCloskey, L. R., Wethey, D. S. & Porter, J. W. (1978): Measurement and interpretation of photosynthesis and respiration in reef corals.—In:Stoddart, D. R. & Johannes, R. E. (eds.): Coral reefs research methods.—379–397 (Unesco)

  • Mergner, H. (1971): Structure, ecology and zonation of Red Sea reefs (in comparison with South Indian and Jamaican reefs). —Symp. Zool. Soc. Lond.,28, 141–161, London

    Google Scholar 

  • — (1979): Quantitative ökologische Analyse eines Rifflagunenareals bei Aqaba (Gold von Aqaba, Rotes Meer).— Helgol. wiss. Meeresunters.,32, 476–507, 8 Figs., 9 Tables, Hamburg

    Google Scholar 

  • Mergner, H. &Schuhmacher, H. (1974): Morphologie, Ökologie und Zonierung von Korallenriffen bei Aqaba (Golf von Aqaba, Rotes Meer).—Helgoländer wiss. Meeresunters.,26, 238–358, Hamburg

    Google Scholar 

  • —— (1981): Quantitative Analyse der Korallenbesiedlung eines Vorriffareals bei Aqaba (Rotes Meer).—Helgoländer wiss. Meeresunters.,34, 115–132, Hamburg

    Google Scholar 

  • — (1985a): Quantitative Analyse von Korallengemeinschaften des Sanganeb-Atolls (mittleres Rotes Meer) I. Die Besiedlungsstruktur hydrodynamisch unterschiedlich exponierter Außen- und Innenriffe.—Helgoländer wiss. Meeresunters., 39, 375–417, Hamburg

    Google Scholar 

  • —— (1985b): Quantitative analysis of coral communities on Sanganeb Atoll (Central Red Sea) comparison with Aqaba reefs (Northern Red Sea).—Proc. 5th Int. Coral Reef Congr.,6, 243–248 Tahiti

    Google Scholar 

  • Mergner, H., Schuhmacher, H. &Kroll, D.K. (1994): Long-term changes in the coral community of a fore reef area near Aqaba (Red Sea): 1976–1989.—Proc. 7th Int. Coral Reef Symp.,1, 104–113, Guam

    Google Scholar 

  • Moyer, J. T., Emerson, W. K., &Ross, M. (1982): Massive destruction of scleractinian corals by the muricid gastropods,Drupella, in Japan and the Philippines.—The Nautilus,96, 69–82

    Google Scholar 

  • Muscatine,L. (1990): The role of symbiotic algae in carbon and energy flux in reef corals.—In:Dubinsky,Z. (ed.): Coral reefs: 75-87, Amsterdam (Elsevier).

  • Neumannn, A.C. &Macintyre, I. (1984): Reef response to sea level rise: keep-up, catch-up or give-up.—Proc. 5th Int. Coral Reef Symp.,3, 105–110, Tahiti

    Google Scholar 

  • Perkins, R.D. &Tsentas, C.I. (1976): Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies.—Geol. Soc. Am. Bull.,87, 1615–1628, Boulder

    Google Scholar 

  • Peyrot-Clausade, M., Le Campion-Alsumard T., Hutchings, P., Payri, C. &Fontaine, M.F. (1994): Environmental factors influencing rates and agents of reef bioerosion (French Polynesia)-a six month experimental model.—Proc. 7th Int. Coral Reef. Symp.,1, 438–439, Guam

    Google Scholar 

  • Porter, J. W. (1978): Coral feeding on zooplankton.—In:Stoddart, D. R. & Johannes, R. E. (eds): Coral reefs: research medthods.—515–521 (Unesco)

  • Porter, J. W., Muscatine, L., Dubinsky, Z. &Falkowski, P. G. (1984): Primary production and photoadaptation in light-and shade-adapted colonies of the symbiotic coral,Stylophora pistillata.—Proc. R. Soc. London B,222, 161–180

    Google Scholar 

  • Prezelin, B. B. &Alberte, R. S. (1978): Photosynthetic characteristics and organisation of chlorophyll in marine dinoflagellates. —Proc. natn. Acad. Sci. U. S. A.,75, 1801–1804

    Google Scholar 

  • Radtke, G. (1991): Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. —Courier Forsch.-Inst. Senckenberg,138, 1–185, Frankfurt

    Google Scholar 

  • — (1993): The distribution of microborings in molluscan shells from Recent reef environments at Lee Stocking Island, Bahamas.—Facies,29, 81–92, Erlangen

    Google Scholar 

  • Rees, T. A. V. (1991): Are symbiotic algae nutrient deficient?— Proc. R. Soc. Lond. B,243, 227–233

    Google Scholar 

  • Reinicke, G. B. (1994): Beiträge zur Systematik und Ökologie der Xeniidae (Octocorallia, Alcyonacea) des Roten Meeres. —Ph.D. Thesis, Universität Essen, 167, p., Essen

    Google Scholar 

  • Rooney, W.S. &Perkins, R.D. (1972): Distribution and geologic significance of microboring organisms within sediments of the Arlington Reef Complex, Australia.—Geol. Soc. Am. Bull.,83, 1139–1150, Boulder

    Google Scholar 

  • Rosen, B. R. (1971): The distribution of reef coral genera in the India Ocean.—Symp. zool. Soc. London.,28, 263–299

    Google Scholar 

  • Scheer, G. &Pillai, C. S. G. (1983): Report on the stony corals from the Red Sea.—Zoologica,45, 1–198, Stuttgart

    Google Scholar 

  • Schlichter, D. (1991): A perforated Gastrovascular Cavity inLeptoseris fragilis.—Naturwissenschaften,78, 467–469

    Google Scholar 

  • — (1992): A perforated gastrovascular cavity in the symbiotic deep-water coral leptoseris,fragilis: a new strategy to optimize heterotrophic nutrition.—Helgoländer Meeresunters.,45, 423–443, Hamburg

    Google Scholar 

  • Schlichter, D. &Fricke, H. W. (1990): Coral host improves photosynthesis of endosymbiotic algae.—Naturwissenschaften,77, 447–450.

    Google Scholar 

  • —— (1991): Mechanisms, of amplification of photosynthetically active radiation in the symbiotic deep water coral Leptoseris fragilis.—Hydrobiologia,216/217, 389–394

    Google Scholar 

  • Schlichter, D. &Liebezeit, G. (1991): The natural release of amino acids from the symbiotic coralHeteroxenia fuscescens (Ehrb.) as a function of photosynthesis.—J. Exp. Mar. Biol. Ecol.,150, 83–90.

    Google Scholar 

  • Schlichter, D., Svoboda, A. &Kremer, B. P. (1983): Functional autotrophy ofHeteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host.—Mar. Biol.,78, 29–38

    Google Scholar 

  • Schlichter, D., Weber, W. &Fricke, H. W., (1985): A chromatophore system in the hermatypic, deep water coralLeptoseris fragilis (Anthozoa, Hexacorallia).—Mar. Biol.,89, 143–147

    Google Scholar 

  • Schlichter, D., Fricke, H. W. &Weber, W. (1986): Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone.—Mar. Biol.,91, 403–407

    Google Scholar 

  • Schlichter, D., Fricke, H. W. &Weber W. (1988): Evidence for PAR enhancement, by reflection, scattering and fluorescence in the symbiotic deep water coralLeptoseris fragilis (PAR= photoynthetically active Radiation.—Endocyt. C. Res.,5, 83–94

    Google Scholar 

  • Schmidt, H. (1992): Mikrobohrspuren ausgewählter Faziesbereich der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation).—Frankfurter geowiss. Arb., Ser. A, 12, 228 S., Frankfurt a.M.

  • Schuhmacher, H. (1982): Korallenriffe. Ihre Verbreitung, Tierwelt und ökologie.—BLV, 275 p., München

  • — (1983): Die Tiefenverbreitung lichtabhängiger Steinkorallen und die Ansatztiefe rezenter Riffe im Golf von Akaba (Rotes Meer).—Essener Geogr. Arb.,6, 59–69, Essen

    Google Scholar 

  • — (1994): Impact of some corallivorous snails on stony corals in the Red Sea.—Proc. 7th Int. Coral Reef Symp.,2, 840–846, Guam

    Google Scholar 

  • Schuhmacher, H. &Mergner, H. (1985): Quantitative Analyse von Korallengemeinschaften des Sanganeb-Atolls (mittleres Rotes Meer). II. Vergleich mit einem Riffareal bei Aqaba (nördliches Rotes Meer) am Nordrande des indopazifischen Riffgürtels.—Helgoländer wiss. Meeresunters.,39, 419–440, Hamburg

    Google Scholar 

  • Schuhmacher, H. &Zibrowius, H. (1985): What is hermatypic. —Coral Reefs,4, 1–9, Berlin

    Google Scholar 

  • Schuhmacher, H., Kroll, D. K. & Reinicke G. B. (in press): Long-term fluctuations of coral communities at Aqaba and on Sanganeb-Atoll (northern and central Red Sea) over more than a decade.—Beitr. Paläont. Österr., Wien

  • Scoffin, T.P. (1972): Fossilization of Bermuda patch reefs.— Science,178, 1280–1282, Washington D.C.

    Google Scholar 

  • Scoffin, T.P., Stearn, C.W., Boucher, D., Frydl, P., Hawkins, C.M., Hunter, I.G. &MacGeachy, J.K. (1980): Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II-Erosion, sediments and internal structure. —Bull. Mar. Sci.,30, 475–508, Miami

    Google Scholar 

  • Scott, B.D. &Jitts, H.R. (1977): Photosynthesis of Phytoplankton and Zooxanthellae on a Coral Reef.—Mar. Biol.,41, 307–315

    Google Scholar 

  • Sheppard, C. R. C. &Sheppard, A. L. S. (1991): Corals and coral communities of Arabia.—Fauma of Saudi Arabia,12, 1–170

    Google Scholar 

  • Smith, S. V. &Kinsey, D. W. (1976): Calcium carbonate production, coral reef growth and sea level change.—Science,194, 937–939

    Google Scholar 

  • Sorokin,Yu.I. (1990): Plankton in the reef ecosystem.—In:Dubinsky,Z. (ed.): Coral reefs.—291-327, Amsterdam (Elsevier)

  • Stearn, C.W. &Scoffin, T.P. (1977): Carbonate budget of a fringing reef, Barbados.—Proc. 3rd Int. Coral Reef. Symp.,2, 471–476, University of Miami

    Google Scholar 

  • Steven, A. &Larkum, T. (1993) ENCORE: The effect of nutrient enrichment on coral reefs.—Search,24, 216–219, Melbourne

    Google Scholar 

  • Swinchatt, J.P. (1969): Algal boring: a possible depth indicator in carbonate rocks and sediments.—Geol. Soc. Am. Bull.,80, 1391–1396 Boulder

    Google Scholar 

  • Torunski, H. (1979): Biological erosion and its significance for the morphogenesis of limestone coasts and for nearshore sedimentation (Northern Adriatic).—Senckenbergiana marit.,11, 193–265, Frankfurt/M.

    Google Scholar 

  • Tudhope, A.W. &Risk, M.J. (1985): Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia.—J. Sed. Petrol.,55, 440–447, Tulsa

    Google Scholar 

  • Turner, S.J. (1994): Spatial varability in the abundance of the corallivorous gastropodDrupella cornus.—Coral Reefs,13, 41–48, Heidelberg

    Google Scholar 

  • Tursch, B. &Tursch, A. (1982): The soft-coral community on a sheltered Reef Quadrat at Laing Island (Papua New Guinea). —Mar. Biol.,68, 321–332

    Google Scholar 

  • Tytler, E.M. &Spencer, Davis, P. (1983): A method of isolating clean and viable zooxanthellae by density gradient centrifugation. —Limnol. Oceanogr.28, 1266–1268

    Google Scholar 

  • Vaughan, T.W. (1919): Corals and the formation of coral reefs. —Smithson Inst Ann Rev. 189–238, Washington

  • Vogel, K. (1993): Bioeroders in fossil reefs.—Facies,28, 109–114, Erlangen

    Google Scholar 

  • Vogel, K., Golubic, C. &Brett, C.E. (1987): Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, U.S.A..—Lethaia,20, 263–290, Oslo

    Google Scholar 

  • Warme,J.E. (1975): Borings as trace fossils, and the processes of marine bioerosion.—In:Frey,R.W. (ed): The study of trace fossils.—181-227, New York (Springer)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dullo, WC., Gektidis, M., Golubic, S. et al. Factors controlling holocene reef growth: An interdisciplinary approach. Facies 32, 145–188 (1995). https://doi.org/10.1007/BF02536867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536867

Key Words

Navigation