Skip to main content
Log in

Evolution of the Quaternary melitite-nephelinite Herchenberg volcano (East Eifel)

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens W (1929) Das Tertiär im nördlichen Laacher-See-Gebiet. Jahrb Preuß Geol Landesanst 50:332–370

    Google Scholar 

  • Ahrens W (1930) Geologische Skizze des Vulkangebietes des Laacher Sees. Jahrb Preuß Geol Landesanst 51:130–140

    Google Scholar 

  • Bednarz U (1982) Geologie und Petrologie der spätquartären Vulkane Herchenberg, Leilenkopf und Dümpelmaar (nördliches Laacher-See-Gebiet). Diplom-thesis (Diplomarbeit) Ruhr-Universität Bochum (unpubl): 1–298

  • Bednarz U, Schmincke HU (1990a) The formation of dense ellipsoidal lapilli in scoria cones of the East- and West-Eifel volcanic fields (FRG) (in prep)

  • Bednarz U, Schmincke HU (1990b) Petrology and geochemistry of the Quaternary melilite-nephelinite-carbonatite Herchenberg scoria cone (E-Eifel, W-Germany) (in prep)

  • Blackburn EA, Wilson L, Sparks RSJ (1976) Mechanisms and dynamics of strombolian activity. J Geol Soc 132:429–440

    Google Scholar 

  • Bogaard Cvd, Bogaard Pvd, Schmincke HU (1989) Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeitalter und Gegenwart 39:62–86

    Google Scholar 

  • Bogaard Pvd, Schmincke HU (1985) Laacher See Tephra-A wide-spread isochronous Late Quaternary tephra layer in Central and Northern Europe. Geol Soc Am Bull 96:1554–1571

    Google Scholar 

  • Bogaard Pvd, Hall CM, Schmincke HU, York D (1987) 40Ar/39Ar laser dating of single grains: Ages of Quaternary tephra from the East Eifel volcanic field, FRG. Geophys Res Lett 14:1211–1214

    Google Scholar 

  • Chouet BN, Hamisevicz N, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79:4961–4975

    Google Scholar 

  • Duda A, Schmincke HU (1978) Quaternary basanites, melilite nephelinites and tephrites from the Laacher See Area (Germany). N Jb Miner Abh 132:1–33

    Google Scholar 

  • Duffield WA, Bacon CR, Roquemore GR (1979) Origin of reverse-graded bedding in air-fall pumice, Coso Range, California. J Volcanol Geotherm Res 5:35–48

    Google Scholar 

  • Fedotov SA, Chirkov AM, Gusev NA, Kovalev GN, Slezin YB (1980) The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975–1976. Bull Volcanol 43:47–60

    Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New York Tokyo, pp 1–472

    Google Scholar 

  • Head III JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271

    Google Scholar 

  • Houghton BF, Schmincke HU (1986) Mixed deposits of simultaneous Strombolian and phreatomagmatic volcanism (Rothenberg volcano, East Eifel). J Volcanol Geotherm Res 30:117–130

    Google Scholar 

  • Houghton BF, Schmincke HU (1989) Rothenberg scoria cone, East Eifel: a complex Strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48

    Google Scholar 

  • Karakuzu F (1982) Teil I: Aufbau und Entstehung der spätquartären Vulkane Dachsbusch und Rothenberg in der Osteifel. Teil II: Geologische und petrologische Entwicklung der Vulkane Rothenberg, Dachsbusch und Wehrer Kessel. Diplomthesis (Diplomarbeit) Ruhr-Universität Bochum (unpubl):1–215

  • Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Soc London 140:939–944

    Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9:17–27

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice-Hall Inc, Englewood Cliffs, New Jersey, pp 1–510

    Google Scholar 

  • McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272

    Google Scholar 

  • Mertes H (1983) Aufbau und Genese des Westeifeler Vulkanfeldes. Bochumer geol geotechn Arb 9:1–415

    Google Scholar 

  • Meyer W, Stets J (1975) Das Rheinprofil zwischen Bonn und Bingen. Z dt Geol Ges 126:15–29

    Google Scholar 

  • Nakamura K (1981) Two basic types of volcanoes — polygenetic and independant monogenetic group of volcanoes, and tectonic stress field (abstract). In: Abstract of the 1981 IAVCEI Symposium — arc volcanism — The Volcanological Society of Japan and the International Association of Volcanology and Chemistry of the Earth's Interior:251

  • Pier R (1978) Teil 1: Aufbau und Entstehung des spätquartären Basanitvulkankomplexes Karmelenberg. Teil 2: Sedimentologie und Petrographie der Pyroklastika und Laven des Karmelenberges (E-Eifel). Diplom-thesis (Diplomarbeit) Ruhr-Universität Bochum (unpubl), pp 1–139

  • Porter SC (1972) Distribution, morphology and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol Soc Am Bull 83:3607–3612

    Google Scholar 

  • Prange C (1984) Die vulkanologische, tektonische und geochemische Entwicklung der quartären Eiterkopfvulkane, SE-Eifel. Diplom-thesis (Diplomarbeit) Ruhr-Universität Bochum (unpubl):1–236

  • Schmincke HU (1977a) Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol Jb A 39:1–48

    Google Scholar 

  • Schmincke HU (1977b) Eifel-Vulkanismus östlich des Gebietes Rieden-Mayen. Fortschr Mineral 55:1–31

    Google Scholar 

  • Schmincke HU (1982) Vulkane und ihre Wurzeln. Rhein Westf Akad Wiss Westd Verlag Opladen N 315, pp 35–78

    Google Scholar 

  • Schmincke HU (1991) Die quartären Vulkanfelder der Eifel. Schweizerbart'sche Verlagsbuchhandlung Stuttgart (in press)

  • Schumacher R (1988) Aschenaggregate in vulkaniklastischen Transportsystemen. PhD-thesis (Ruhr-Universität Bochum), pp 1–140

  • Schumacher R, Schmincke HU (1990) The lateral facies of ignimbrites at Laacher See volcano. Bull Volcanol 52:271–287

    Google Scholar 

  • Self S, Sparks RSJ, Booth B, Walker GPL (1974) The 1973 Heimaey strombolian scoria deposit, Iceland, Geol Mag 111:539–548

    Google Scholar 

  • Sobczak G (1987) Vulkanologische und geochemische Entwicklung der spätquartären Bellerberg Vulkangruppe (Osteifel). Diplom-thesis (Diplomarbeit) Ruhr-Universität Bochum (unpubl), pp 1–215

  • Terzaghi K, Peck RB (1967) Soil Mechanics in Engineering Practice. Wiley, London, pp 1–729

    Google Scholar 

  • Thorarinsson S, Steinthorsson S, Einarsson T, Kristmannsdottir H, Oskarsson N (1973) The eruption on Heimaey, Iceland. Nature 241:372–375

    Google Scholar 

  • Vergniolle S, Jaupart C (1986) Separated two-phase flow and basaltic eruptions. J Geophys Res 91:12842–12860

    Google Scholar 

  • Viereck L (1984) Geologische und petrologische Entwicklung des pleistozänen Leuzitit-Leuzitphonolith-Vulkankomplexes Rieden, Osteifel. Bochumer Geol Geotechn Arb 17:1–337

    Google Scholar 

  • Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317

    Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman, Copper & Cp, San Francisco, pp 1–397

    Google Scholar 

  • Wilson L, Head III JW (1981) Ascent and eruption of basaltic magma on the earth and moon. J Geophys Res 86:2971–3001

    Google Scholar 

  • Wörner G, Schmincke HU (1984) Mineralogy and geochemical evolution of the Laacher See magma chamber. J Petrol 25:805–835

    Google Scholar 

  • Wohletz KH (1980) Explosive hydromagmatic volcanism. PhD-thesis Arizona State University (unpubl), pp 1–231

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63

    Google Scholar 

  • Wood CA (1980a) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Google Scholar 

  • Wood CA (1980b) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednarz, U., Schmincke, HU. Evolution of the Quaternary melitite-nephelinite Herchenberg volcano (East Eifel). Bull Volcanol 52, 426–444 (1990). https://doi.org/10.1007/BF00268924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268924

Keywords

Navigation