Skip to main content
Log in

Locomotion, fin coordination and body form of the living coelacanth Latimeria chalumnae

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Locomotion and fin coordination of the only living crossopterygian fish Latimeria chalumnae were studied with submersibles in the fish's natural habitat at around 200 m depth off Grand Comoro, western Indian Ocean. Latimeria is a highly specialized predatory fish adapted for nocturnal drift hunting with good fast start capability. Twelve different forward movements and manoeuvres were found and described. The movements of the paired and unpaired fins were analysed. Propulsion was accomplished with downstrokes of the pectoral fins and right-left or left-right strokes of the unpaired lobed fins. The paired fins were not used for walking on the bottom. Swimming velocity, stroke amplitudes and stroke duration were analysed from films and videos taken in the wild. Stroke duration of the paired and unpaired lobed fins was similar and varies between 1.9 to 5.8 sec. Paired fins alternated synchronously. The coordination at approximately ø = 180° between opposite paired fins is stable and independent of locomotory pattern and velocity. A phase deviation of about 90°–100° exists between paired and unpaired fins. A model is developed that describes the functional implication of this deviation as a method of producing a steady swimming performance which smooths recoil movements and prevents rotation of the body. The novel slow and fast swimming mode of Latimeria is named in accordance with Breder's (1926) descriptive nomenclature as ‘coelacanthiform’. This study indicates a primary swimming function for the primitive sarcopterygian fin and confirms earlier evolutionary assumptions of a more open-water life style of coelacanth fishes. Paleoethological models of the walking habits of Latimeria have to be rejected. Synchronous alternation of paired fins originating from hydrodynamic demands could be a pre-adaptation and a shared derived character in sarcopterygian fishes that facilitated the fish-tetrapod transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Breder, C.M. 1926. The locomotion of fishes. Zoologica 4 (5): 159–297.

    Google Scholar 

  • Dean, B. 1906. Notes on the living specimen of the Australian lungfish, Ceratodus forsteri, in the Zoological Society's Collection. Proc. Zool. Soc. London 1906: 168–178.

    Google Scholar 

  • Eaton, T.H. 1960. The aquatic origin of tetrapods. Trans. Kansas Acad. Sci. 63: 115–120.

    Google Scholar 

  • Forey, P.L. 1990. The coelacanth fish: progress and prospects. Sci. Progress Oxford 74: 53–67.

    Google Scholar 

  • Fricke, H., O. Reinicke, H. Hofer & W. Nachtigall. 1987. Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature 329: 331–333.

    Google Scholar 

  • Fricke, H. & R. Plante. 1988. Habitat requirements of the living coelacanth Latimeria chalumnae at Grande Comore, Indian Ocean. Naturwissenschaften 75: 149–151.

    Google Scholar 

  • Fricke, H., J. Schauer, K. Hissmann, L. Kasang & R. Plante. 1991. Coelacanth Latimeria chalumnae aggregates in caves: first observations on their resting habitat and social behavior. Env. Biol. Fish. 30: 281–285.

    Google Scholar 

  • Fischer, W. & G. Bianchi. 1984. FAO species identification sheets for fishery purposes, Western Indian Ocean. Food and Agriculture Organization of the United Nations, Rome, sheet CARAN Carang 9.

    Google Scholar 

  • Gray, J.G. 1957. How fish swim. Sci. Amer. 197: 48–54.

    Google Scholar 

  • Gray, J.G. 1968. Animal locomotion. Weidenfeld & Nicolson, London. 479 pp.

    Google Scholar 

  • Greenway, P. 1965. Body form and behavioural types in fish. Experientia 111: 489–497.

    Google Scholar 

  • Greenwood, P.H. 1986. The natural history of the African lungfishes. J. Morph. Suppl. 1: 163–179.

    Google Scholar 

  • Gregory, W.K. & H.C. Raven. 1941. On the probable mode of transformation of rhipidistian paddle into tetrapod limb. Trans. New York Acad. Sci. 3: 153–158.

    Google Scholar 

  • Harper, D.G. & R.W. Blake. 1990. Fast start performances of rainbow trout Salmo gardneri and northern pike Esox lucius. J. Exp. Biol. 150: 321–342.

    Google Scholar 

  • Hertel, H. 1963. Struktur, Form and Bewegung. Krauskopf-Verlag, Mainz. 244 pp.

    Google Scholar 

  • Holst, E. v. 1939. Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. pp. 228–306. In: L. Asher, A. Butenandt, L. Lendle & H. Rein(ed.) Ergebnisse der Physiologic, biologischer Chemie and experimenteller Pharmakologie, Bergmann-Verlag, München.

    Google Scholar 

  • Lindsey, C.C. 1978. Form, function and locomotory habits in fish. pp. 1–100. In: W.S. Hoar & D.J. Randall(ed.) Fish Physiology 7, Academic Press, New York.

    Google Scholar 

  • Locket, N.A. & R.W. Griffith. 1972. Observations on a living coelacanth. Nature 237: 175.

    Google Scholar 

  • McCosker, J.E. 1979. Inferred natural history of the living coelacanth, Latimeria chalumnae. Occ. Pap. Calif. Acad. Sci. 134: 17–24.

    Google Scholar 

  • Meyer, A. & A.C. Wilson. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Mol. Evol. 31: 359–364.

    Google Scholar 

  • Millot, J. 1955. First observations on a living coelacanth. Nature 175: 362–363.

    Google Scholar 

  • Millot, J. 1955. The coelacanth. Sci. Amer. 193: 34–39.

    Google Scholar 

  • Millot, J. & J. Anthony. 1958. Anatomic de Latimeria chalumnae. Tome I. Squelette et muscles. C.N.R.S., Paris. 122 pp.

    Google Scholar 

  • Millot, J. & J. Anthony. 1965. Anatomie de Latimeria chalumnae. Tome II. Système nerveux et organes de sens. C.N.R.S., Paris. 131 pp.

    Google Scholar 

  • Nevenzel, J.C., W. Rodegker, J.F. Mead & M.S. Gordon. 1966. Lipids of the living coelacanth, Latimeria chalumnae. Science 152: 1753–1755.

    Google Scholar 

  • Northcutt, R.G. 1986. Lungfish neural characters and their bearing on sarcopterygian phylogeny. J. Morphol. Suppl. 1: 227–297.

    Google Scholar 

  • Riess, J. 1984. How to reconstruct paleoecology? Outlines of a holistic view and an introduction to ichthyosaur locomotion. pp. 201–205. In: W.E. Reif & F. Westphal(ed.) Third Symposium on Mesozoic Terrestrial Ecosystems, Attempto Verlag, Tübingen.

    Google Scholar 

  • Rosen, D.E., P.L. Forey, B.G. Gardiner & C. Patterson. 1981. Lungfishes, tetrapods, paleontology and plesiomorphy. Bull. Amer. Mus. Nat. Hist. 167 (4): 159–276.

    Google Scholar 

  • Schaeffer, B. 1948. A study of Diplurus longicaudatus with notes on the body form and locomotion of the coelacanth. Amer. Mus. Novitates 1378: 1–32.

    Google Scholar 

  • Schaeffer, B. 1965. The rhipidistian-amphibian transition. Amer. Zool. 5: 267–276.

    Google Scholar 

  • Scoones, P. 1980. Coelacanth encounter. Skin Diver 29: 8–9, 11.

    Google Scholar 

  • Smith, J.L.B. 1956. Old fourlegs. The story of the coelacanth. Longman Green, London. 260 pp.

    Google Scholar 

  • Smith, M.M. & P.C. Heemstra. 1988. Smiths' sea fishes, plates 34–43. Southern Book Publishers, Johannesburg.

    Google Scholar 

  • Starck, D. 1978. Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Gundlage, Band 1. Springer Verlag, Heidelberg. 274 pp.

    Google Scholar 

  • Stevens, J.A. 1966. Portrait of a living fossil. Life 61: 4.

    Google Scholar 

  • Szarski, H. 1962. The origin of the Amphibia. Quart. Rev. Biol. 37: 189–241.

    Google Scholar 

  • Thomson, K.S. 1967. Notes on the relationship of the rhipidistian fishes and the ancestry of the tetrapods. J. Paleont. 41: 660–674.

    Google Scholar 

  • Thomson, K.S. 1973. Secrets of the coelacanth. Nat. Hist. 82: 58–65.

    Google Scholar 

  • Uyeno, T 1991. Observations on locomotion and feeding of released coelacanths Latimeria chalumnae. Env. Biol. Fish. 32: 267–273.

    Google Scholar 

  • Ulrich, W. 1959. Neu entdeckte Tiere von allgemein zoologischer Bedeutung. Math. Nat. Unterricht 12: 262–273.

    Google Scholar 

  • Wahlert, G.v. & H.v. Wahlert. 1962. Funktion and biologische Bedeutung der Quastenflossen. Natur and Museum 92: 7–12.

    Google Scholar 

  • Webb, P.V. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190: 1–158.

    Google Scholar 

  • Webb, P.V. 1978. Fast start performance and body form in seven species of teleost fish. J. Exp. Biol. 74: 211–226.

    Google Scholar 

  • Webb, P.V. 1983. Speed, acceleration and manoeuvrability of two teleost fishes. J. Exp. Biol. 102: 115–122.

    Google Scholar 

  • Weihs, D. 1973. The mechanism of rapid starting of slender fish. Biorheology 10: 343–350.

    Google Scholar 

  • Westoll, T.S. 1943. The origin of tetrapods. Biol. Rev. 18: 78–98.

    Google Scholar 

  • White, E.I. 1953. The coelacanth fishes. Discovery 15: 332–335.

    Google Scholar 

  • Wickler, W. 1972. Verhalten and Umwelt. Hoffmann & Campe, Hamburg. 182 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, H., Hissmann, K. Locomotion, fin coordination and body form of the living coelacanth Latimeria chalumnae . Environ Biol Fish 34, 329–356 (1992). https://doi.org/10.1007/BF00004739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004739

Key words

Navigation