Skip to main content
Log in

Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (δO18 magnetite=−7.6 to −4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (δO18 magnetite=−2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (δO18 magnetite=−6.8 and −7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (δO18 magnetite=−6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee, A. L.: Metamorphic zones in northern Vermont. Studies of Appalachian geology (ed. E. Zen, W. White, J. Hadley, and J. B. Thompson), p. 329–341. New York: Interscience publishers 1968.

    Google Scholar 

  • —, Ray, L.: Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates and sulfates. Anal. Chem.42, 1408–1414 (1970).

    Google Scholar 

  • Aumento, F.: Serpentine mineralogy of ultrabasic intrusions in Canada and on the Mid-Atlantic Ridge. Geol. Surv. Canada Paper69–53, 1–51 (1970).

    Google Scholar 

  • Barnes, I., La Marche, V. C., Jr., Himmelberg, G.: Geochemical evidence of present day serpentinization. Science156, 830–832 (1967).

    Google Scholar 

  • —, O'Neil, J. R.: The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Bull. Geol.Soc. Am.80, 1947–1960 (1969).

    Google Scholar 

  • Bence, A. E., Albee, A. L.: Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol.76, 382–403 (1968).

    Google Scholar 

  • Bowen, N. L., Tuttle, O. F.: The system MgO-SiO2-H2O. Bull. Geol. Soc. Am.60, 439–460 (1949).

    Google Scholar 

  • Bowin, C. O.: Geology of Central Dominican Republic. Geol. Soc. Am. Mem.98, 11–84 (1966).

    Google Scholar 

  • Cady, W. M., Albee, A. L., Chidester, A. H.: Bedrock geology and asbestos deposits of Missisquoi Valley and vicinity, Vermont. U. S. Geol. Surv. Bull.1122 B, B 1-B 78 (1963).

    Google Scholar 

  • Coleman, R. G.: Low-temperature reaction zones and alpine ultramafic rocks of California, Oregon and Washington. U. S. Geol. Surv. Bull.1247, 1–49 (1967).

    Google Scholar 

  • Fyfe, W. S.: Metamorphism in mobile belts-the glaucophane schist problem. Trans. Leicester Let. and Phil. Soc.61, 36–54 (1967).

    Google Scholar 

  • Garlick, G. D.: Oxygen isotope fractionation in igneous rocks. Earth and Plan. Sci. Let.1, 361–368 (1966).

    Google Scholar 

  • —: The stable isotopes of oxygen. Handbook of geochemistry (ed. K. Wedehohl), p. 1–27. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • —, Epstein, S.: Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim. Cosmochim. Acta31, 181–214 (1967).

    Google Scholar 

  • Gresens, R. L.: Blueschist alteration during serpentinization. Contr. Mineral. and Petrol.24, 93–113 (1969).

    Google Scholar 

  • Hostetler, P. B., Coleman, R. G., Mumpton, F. A., Evans, B. W.: Brucite in alpine serpentines. Am. Mineralogist51, 75–98 (1966).

    Google Scholar 

  • Lapham, D. M.: The tectonic history of multiply deformed serpentinite in the Piedmont of Pennsylvania. In: Ultramafic and Related rocks (ed. P. J. Wyllie), p. 174–183. New York: John Wiley & Sons, Inc. 1967.

    Google Scholar 

  • Maddock, M. E.: Geology of the Mt. Boardman Quadrangle, Santa Clara and Stanislaus Counties, California. Calif. Div. of Mines and Geol. Map Sheet3.

  • McBirney, A. R.: Geology of a part of the Central Guatemalan Cordillera. Univ. Calif. Publ. Geol. Sci.38, 177–242 (1963).

    Google Scholar 

  • O'Neil, J. R., Clayton, R. N.: Oxygen isotope geothermometry. In: Isotopic and cosmic chemistry (ed. H. Craig, S. L. Miller, and G. J. Wasserburg), p. 157–168. Amsterdam: North-Holland Publ. Co. 1964.

    Google Scholar 

  • —, Taylor, H. P., Jr.: The oxygen isotope and cation exchange chemistry of feldspars. Am. Mineralogist52, 1414–1437 (1967).

    Google Scholar 

  • — —: Oxygen isotope fractionation between muscovite and water. J. Geophys. Res.74, 6012–6022 (1967).

    Google Scholar 

  • Page, N. J.: Serpentinization in a sheared serpentinite lens, Tiburon Peninsula, California. Geological survey research. 1968. U. S. Geol. Surv. Profess. Papers600 B, B 21-B 28 (1968).

    Google Scholar 

  • Phillips, J. D., Thompson, G., Von Herzen, R. P., Bowen, V. T.: Mid-Atlantic Ridge near 43° N latitude. J. Geophys. Res.74, 3069–3081 (1969).

    Google Scholar 

  • Scarfe, C. M., Wyllie, P. J.: Experimental redetermination of the upper stability limit of serpentine up to 3 kbar pressure. Trans. Am. Geophys. Union48, 225 (1967).

    Google Scholar 

  • Shieh, Y. N., Taylor, Jr., H. P.: Oxygen and hydrogen isotope studies on contact metamorphism in the Santa Rosa Range, Nevada and other areas. Contr. Mineral. and Petrol.20, 306–356 (1969).

    Google Scholar 

  • Taylor, H. P., Jr.: The oxygen isotope geochemistry of igneous rocks. Contr. Mineral. and Petrol.19, 1–71 (1968).

    Google Scholar 

  • —, Coleman, R. G.: O18/O16 ratios of coexisting minerals in glaucophane-bearing metamorphic rocks. Bull. Geol. Soc. Am.79, 1727–1756 (1968).

    Google Scholar 

  • —, Epstein, S.: Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part I: Principles and experimental results. Bull. Geol. Soc. Am.73, 461–480 (1962).

    Google Scholar 

  • — —: O18/O16 ratios of Apollo 11 lunar rocks and minerals. Proc. of the Apollo 11 Lunar Science Conf. Geochim. Cosmochim. Acta, Suppl. 1,2, 1613–1623 (1970).

    Google Scholar 

  • —, Noble, J. A.: Origin of magnetite in the zoned ultramafic complexes of southeastern Alaska. Symposium on Magmatic Ore Deposits. Econ. Geol. Monogr.4, 209–230 (1969).

    Google Scholar 

  • Verhoogen, J., Turner, F. J., Weiss, L. E., Wahrhaftig, C., Fyfe, W. S.: The earth, an introduction to physical geology, p. 592. London, New York: Holt, Rinehart and Winston, Inc. 1970.

    Google Scholar 

  • Wenner, D. B.: Hydrogen and oxygen isotopic studies of serpentinization of ultramafic rocks. Ph. D. Thesis, California Institute of Technology (1971).

  • - Taylor, G. P., Jr.: δD and δO18 studies of serpentinization of ultramafic rocks. (Abst.). Geol. Soc. Am. Annual Meeting, Atlantic City, N. J. (1969).

  • White, D. E.: Mercury and base metal deposits with associated thermal and mineral waters. In: Geochemistry of hydrothermal ore Deposits (ed. H. L. Barnes), p. 575–631. London, New York: Holt, Rinehart, and Winston, Inc. 1967.

    Google Scholar 

  • Whittaker, E. J. W., Zussmann, J.: The characterization of serpentine minerals by X-ray diffraction. Mineral. Mag.31, 107–126 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenner, D.B., Taylor, H.P. Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contr. Mineral. and Petrol. 32, 165–185 (1971). https://doi.org/10.1007/BF00643332

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00643332

Keywords

Navigation