Skip to main content

The Model of Educational Reconstruction – a Framework for Improving Teaching and Learning Science1

  • Chapter
Science Education Research and Practice in Europe

Part of the book series: Cultural Perpectives in Science Education ((CHPS,volume 5))

Abstract

To improve instructional practices – in schools, universities and in out of school settings has been a major concern of science education research and development. The intensive international debate on scientific literacy in the 1990s and the series of international monitoring studies like TIMSS and PISA in the 1990s and in the 2000s have fuelled this debate substantially. Various strands of science education research contribute to the stock of knowledge on more efficient means of teaching and learning science. The Model of Educational Reconstruction (MER) presented in this chapter provides a conception of science education research that is relevant for improving instructional practice and teacher professional development programs. The model is based on European Didaktik and Bildung (formation) traditions – with a particular emphasis on the German tradition. A key concern of the model is that science subject matter issues as well as student learning needs and capabilities have to be given equal attention in attempts to improve the quality of teaching and learning

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell S. Research on science teacher knowledge. In: Abell SK, Lederman NG, editors. Handbook of research on science education. Mahwah, N.J.: Lawrence Erlbaum; 2008. p. 1105–1149.

    Google Scholar 

  • Abell, S.K., & Lederman, N.G., Eds., Handbook of research on science education. Mahwah, N.J.: Lawrence Erlbaum.

    Google Scholar 

  • Abd-El-Khalick F, Lederman NG. Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education. 2000;22:665–702.

    Article  Google Scholar 

  • Andersson B, Wallin A. On developing content-oriented theories taking biological evolution as an example. International Journal of Science Education. 2006;28:673–695.

    Article  Google Scholar 

  • Baalmann W, Frerichs V, Weitzel H, Gropengießer H, Kattmann U. Schülervorstellungen zu Prozessen der Anpassung - Ergebnisse einer Interviewstudie im Rahmen der Didaktischen Rekonstruktion [Students’ conceptions on processes of adaptation - results of an interview study within the framework of educational reconstruction]. Zeitschrift für Didaktik der Naturwissenschaften. 2004;10:7–28.

    Google Scholar 

  • Bleichroth W. Elementarisierung, das Kernstück der Unterrichtsvorbereitung [Elementarization, the key of instructional planning]. Naturwissenschaften im Unterricht - Physik, March. 1991;1991:4–11.

    Google Scholar 

  • Borko H. Professional development and teacher learning: Mapping the terrain. Educational Researcher. 2004;33:3–15.

    Article  Google Scholar 

  • Brinschwitz, T., & Gropengießer, H. (2003). Auf dem Prüfstand: Didaktisch rekonstruierte Lernangebote zur Zelle [Under inspection: Educationally reconstructed learning approaches on the cell concept]. In A. Bauer et al., Eds., Entwicklung von Wissen und Kompetenzen im Biologieunterricht (pp. 217-220). Kiel, Germany: IPN - Leibniz-Institute for Science and Mathematics Education.

    Google Scholar 

  • Brown A.L. Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences. 1992;2:141–178.

    Article  Google Scholar 

  • Bybee R. Achieving Scientific Literacy: from purposes to practices. Portsmouth, NH: Heinemann Publishing; 1997.

    Google Scholar 

  • Chevallard Y. Nouveaux objets, nouveaux problèmes en didactique des mathématiques. In: Artigue M, Gras R, Laborde C, Tavignot P, editors. Vingt ans de didactique des mathématiquesen France. Grenoble: La Pensée Sauvage; 1994. p. 313–320.

    Google Scholar 

  • Cobb P, Confrey J, diSessa A, Lehrer R, Schauble L. Design experiments in educational research. Educational Researcher. 2003;32(1):9–13.

    Article  Google Scholar 

  • Dahncke H, Duit R, Gilbert J, Östman L, Psillos D, Pushkin D. Science education versus science in the academy: Questions-discussions-perspectives. In: Behrendt H, Dahncke H, Duit R, Gräber W, Komorek M, Kross A, Reiska P, editors. Research in science education - Past, present, and future. Dordrecht, The Netherland: Kluwer Academic Publishers; 2001. p. 43–48.

    Google Scholar 

  • De Boer G. Scientific literacy: Another look at its historical and contemporary meanings and its relationships to science education reform. Journal of Research in Science Teaching. 2000;57:582–601.

    Article  Google Scholar 

  • Dijk EV, Kattmann U. A research model for the study of science teachers’ PCK and improving teacher education. Teaching and Teacher Education. 2007;23:885–897.

    Article  Google Scholar 

  • Dole J.A, Sinatra G.M. Reconceptualizing change in the cognitive construction of knowledge. Educational Psychology. 1998;33:109–128.

    Google Scholar 

  • Driver R, Erickson G.L. Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education. 1983;10:37–60.

    Article  Google Scholar 

  • Driver R, Easley J.A. Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education. 1978;5:61–84.

    Article  Google Scholar 

  • Duit, R. (2006). Bibliography STCSE — Teachers’ and Students’ Conceptions and Science Education. Kiel, Germany: IPN - Leibniz Institute for Science and Mathematics Education (http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.htmlMay2011)

  • Duit R. Science education research internationally: Conceptions, research methods, domains of research. Eurasia Journal of Mathematics, Science & Technology Education. 2007;3(1):3–15.

    Google Scholar 

  • Duit R, Gropengießer H, Kattmann U. Towards science education research that is relevant for improving practice: The model of educational reconstruction. In: Fischer HE, editor. Developing standards in research on science education. London: Taylor & Francis; 2005. p. 1–9.

    Google Scholar 

  • Duit, R., & Häußler, P. (1994). Learning and teaching energy. In P. Fensham, R. Gunstone, & R., White, Eds., The content of science (pp. 185–200). London: The Falmer Press.

    Google Scholar 

  • Duit, R., Komorek, M., & Müller, C.T. (2004). Fachdidaktisches Denken [Thinking in terms of science education]. Occasional Paper. Kiel, Germany: IPN - Leibniz Institute for Science and Mathematics Education.

    Google Scholar 

  • Duit R, Komorek M, Wilbers J. Studies on educational reconstruction of chaos theory. Research in Science Education. 1997;27:339–357.

    Article  Google Scholar 

  • Duit R, Mikelskis-Seifert S, editors. Physik im Kontext — Konzepte, Ideen, Materialien für effizienten Physikunterricht [Physics in Context - Conceptions, ideas, materials for efficient physics instruction]. Seelze, Germany: Friedrich Verlag; 2010.

    Google Scholar 

  • Duit R, Roth WM, Komorek M, Wilbers J. Conceptual change cum discourse analysis to understand cognition in a unit on chaotic systems: towards an integrative perspective on learning in science. International Journal of Science Education. 1998;20:1059–1073.

    Article  Google Scholar 

  • Duit R, Treagust D. Conceptual change - A powerful framework for improving science teaching and learning. International Journal of Science Education. 2003;25:671–688.

    Article  Google Scholar 

  • Duit R, Treagust D, Widodo A. Teaching science for conceptual change: Theory and practice. In: Vosniadou S, editor. International handbook of research on conceptual change. New York, London: Routledge; 2008. p. 629–646.

    Google Scholar 

  • Duncan R.G, Hmelo-Silver C.E. Editorial: Learning progression: Alingning curriculum, instruction, and assessment. Journal of Research in Science Teaching. 2009;46:606–609.

    Article  Google Scholar 

  • Fach M, Parchmann I. Results of an interview study as basis for the development of stepped supporting tools for stoichiometric problems. Chemistry Education: Research and Practice (CERP). 2007;8(1):13–31.

    Article  Google Scholar 

  • Fensham P. Science content as problematic - issues for research. In: Behrendt H, Dahncke H, Duit R, Gräber W, Komorek M, Kross A, Reiska P, editors. Research in Science Education - past, present, and future. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001. p. 27–41.

    Google Scholar 

  • Fensham P, Gunstone R, White R, editors. The content of science: A constructivist approach to its teaching and learning. London, UK: Falmer; 1994.

    Google Scholar 

  • Frerichs V. Schülervorstellungen und wissenschaftliche Vorstellungen zu den Strukturen und Prozessen der Vererbung — ein Beitrag zur Didaktischen Rekonstruktion [Students’ conceptions and scientific conceptions of processes of inheritance - a contribution to Educational Reconstruction]. Oldenburg, Germany: Didaktisches Zentrum, University of Oldenburg; 1999.

    Google Scholar 

  • Gerstenmair J, Mandl H. Wissenserwerb unter konstruktivistischer Perspektive [Knowledge aquisition in constructivist perspective]. Zeitschrift für Pädagogik. 1995;41:867–888.

    Google Scholar 

  • Gess-Newsome J, Lederman N, editors. Examining pedagogical content knowledge. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1999.

    Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge. The dynamics of science and research in contemporary societies, London, UK: Sage.

    Google Scholar 

  • Gropengießer H. Educational reconstruction of vision. In: Bayrhuber H, Brinkman F, editors. What- Why-How? Research in Didaktik of Biology, Proceedings of the First Conference of European Researchers in Didaktik of Biology (ERIDOB). Kiel, Germany: IPN - Leibniz- Institute for Science and Mathematics Education; 1998. p. 263–272.

    Google Scholar 

  • Gropengießer, H. (2001). Didaktische Rekonstruktion des Sehens [Educational reconstruction of the processes of seeing]. Beiträge zur Didaktischen Rekonstruktion 1. Oldenburg, Germany: Didaktisches Zentrum, University of Oldenburg.

    Google Scholar 

  • Groß, J., & Gropengießer, H. (2003). Kommunikation von Natur: Lernangebote und ihre Nutzung für die qualitative Veränderung des Verstehens [Communication of nature: Learning approaches and their use for improving the quality of understanding]. In A. Bauer, et al., Eds., Entwicklung von Wissen und Kompetenzen im Biologieunterricht (pp. 171–174). Kiel, Germany: IPN - Leibniz Institute for Science and Mathematics Education.

    Google Scholar 

  • Heimann P, Otto G, Schulz W. Unterricht, Analyse und Planung [Instruction - analysis and planning]. 4th ed. Hannover, Germany: Schroedel; 1969.

    Google Scholar 

  • Hellden, G. (2003). Longitudinal studies - providing insight into individual themes in science learning and students’ views of their own learning. In D. Psillos, P., Ed., Science Education Research in the Knowledge Based Society (pp. 61–68). Dordrecht, The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • Hilge, C. (2001). Using everyday and scientific conceptions for developing guidelines of teaching microbiology. In H. Behrendt et al., Eds., Research in science education — past, present, and future (pp. 253–258). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Hopman S, Riquarts K, editors. Didaktik and/or Curriculum. Kiel, Germany: IPN - Leibniz- Institute for Science Education; 1995.

    Google Scholar 

  • Jenkins E. Research in science education in Europe: Retrospect and prospect. In: Behrendt H, Dahncke H, Duit R, Gräber W, Komorek M, Kross A, Reiska P, editors. Research in science education - Past, present, and future. Dordrecht, The Netherland: Kluwer Academic Publishers; 2001. p. 17–26.

    Google Scholar 

  • Kaestle C.F. The awful reputation of educational research. Educational Researcher. 1993;22(1):23–31.

    Google Scholar 

  • Kattmann U. Aquatics, flyers, creepers and terrestrials - Students’ conceptions of animal classification. Journal of Biological Education. 2001;35(3):141–147.

    Article  Google Scholar 

  • Kattmann, U. (2007). Learning biology by means of anthropomorphic conceptions? In M. Hamman et al., Eds., Biology in context: Learning and teaching for 21st century (pp. 21–26). London, UK: Institute of Education, University of London.

    Google Scholar 

  • Kattmann, U., Duit, R., Gropengießer, H., & Komorek, M. (1995, April). A model of educational reconstruction. Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), San Francisco, CA.

    Google Scholar 

  • Kattmann U, Duit R, Gropengießer H, Komorek M. Das Modell der didaktischen Rekonstruktion - Ein Rahmen für naturwissenschaftsdidaktische Forschung und Entwicklung [The model of educational reconstruction - a framework for science education research and development]. Zeitschrift für Didaktik der Naturwissenschaften. 1997;3(3):3–18.

    Google Scholar 

  • Klafki W. Didaktische Analyse als Kern der Unterrichtsvorbereitung [Educational analysis as the kernel of planning instruction]. In: Roth H, Blumental A, editors. Auswahl, Didaktische Analyse. 10th ed. Hannover, Germany: Schroedel; 1969.

    Google Scholar 

  • Knippels MCPJ. Coping with the abstract and complex nature of genetics in biology education. Utrecht, The Netherlands: CD-ß Press; 2002.

    Google Scholar 

  • Komorek M, Kattmann U. The model of educational reconstruction. In: Mikelskis-Seifert S, Ringelband U, Brückmann M, editors. Four decades of research in science educationFrom curriculum development to quality improvement. Münster, Germany: Waxmann; 2009. p. 171–188.

    Google Scholar 

  • Komorek M, Duit R. The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. International Journal of Science Education. 2004;26:619–633.

    Article  Google Scholar 

  • Komorek, M., Wendorff, & Duit, R. (2002). Expertenbefragung zum Bildungswert der nichtlinearen Physik [Experts’ views of the educational significance of non-linear physics]. Zeitschrift für Didaktik der Naturwissenschaften, 8, 33–51.

    Google Scholar 

  • Komorek M, Stavrou D, Duit R. Nonlinear physics in upper physics classes: Educational reconstruction as a frame for development and research in a study of teaching and learning basic ideas of nonlinearity. In: Psillos D, Kariotoglou P, Tselfes V, Hatzikraniotis E, Fassoulopoulos G, Kallery M, editors. Science Education research in the knowledge based society. Dordrecht, The Netherlands: Kluwer; 2003a. p. 269–276.

    Google Scholar 

  • Komorek, M., Vogt, H., & Duit, R. (2003). Moderne Konzepte von Ordnung verstehen [Understanding modern concepts of order]. In Pitton, A., Ed., Außerschulisches Lernen in Physik und Chemie. Gesellschaft für Didaktik der Chemie und Physik Band 23 (pp. 296–298). Münster, Germany: LIT Verlag.

    Google Scholar 

  • Lakoff, G. (1990). Women, fire and dangerous things. What categories reveal about the mind. Chicago and London: The University of Chicago Press.

    Google Scholar 

  • Lederman NG. Nature of science: Past, present, and future. In: Abell SK, Lederman NG, editors. Handbook of research on science education. Mahwah, N.J.: Lawrence Erlbaum; 2008. p. 831–879.

    Google Scholar 

  • Lewis J, Kattmann U. Traits, genes, particles and information: Re-visiting students’ understanding of genetics. International Journal of Science Education. 2004;26:195–206.

    Article  Google Scholar 

  • Lijnse P. "Developmental research" as a way to an empirically based "didactical structure" of science. Science Education. 1995;79:189–199.

    Article  Google Scholar 

  • Luft J. Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching. 2009;44:532–537.

    Article  Google Scholar 

  • McComas W.F, editor. The nature of science in science education: Rationales and strategies. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1998.

    Google Scholar 

  • Nawrath, D. (2010). Kontextorientierung - Rekonstruktion einer fachdidaktischen Konzeption für den Physikunterricht [Context based instruction - Reconstruction of an educational conception for physics education]. Ph. D. Thesis. Oldenburg, Germany: Didaktisches Zentrum, University of Oldenburg.

    Google Scholar 

  • Niebert, K., & Gropengießer, H. (2009). ’The earth is warming because there is a hole in the atmosphere’. Students’ and scientists’ conceptions of global warming. In M. Hammann, K. T., Boersma, & A. J. Waarlo, Eds., The Nature of Research in Biological Education. A selection of papers presented at the VIIth Conference of European Researchers in Didactics of Biology (ERIDOB). Utrecht, The Netherlands: Utrecht University.

    Google Scholar 

  • Osborne, J. C., S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What "ideas-about-science" should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Google Scholar 

  • Osewold D. Students’ conceptions about mechanical waves. In: Metz D, editor. Proceedings of the 7th International History and Philosophy of Science and Science Teaching Conference. Canada: Winnipeg; 2003. p. 674–682.

    Google Scholar 

  • Parchmann, I., & Komorek, M. (2008). The Model of Educational Reconstruction – A research model for the investigation of students’ and teachers’ conceptual ideas. In B. Ralle & I. Eilks, Eds., Promoting successful science education – the worth of science education research (pp. 169–181). Aachen, Germany: Shaker Verlag.

    Google Scholar 

  • Parchmann, I., & Schmidt, S. (2003). Von erwünschten Verbrennungen und unerwünschten Folgen zum Konzept der Atome. [From wanted burnings and unwanted products to the development of the concepts of atoms.] MNU, 56(4), 214–221.

    Google Scholar 

  • Perrenoud P. La transposition didactique à partir de pratiques: des savoirs aux compétences. Revue des sciences de l’éducation. 1998;24:487–514.

    Google Scholar 

  • Phillips DC, editor. Constructivism in education: Opinions and second opinions on controversial issues. Chicago, IL: The University of Chicago Press; 2000.

    Google Scholar 

  • Reinhold P. Elementarisierung und Didaktische Rekonstruktion [Elementarization and Educational Reconstruction]. In: Mikelskis H, editor. Physik Didaktik. Berlin, Germany: Cornelsen/Scriptor; 2006. p. 86–100.

    Google Scholar 

  • Richey, R., Klein, J., & Nelson, W. (2004). Developmental research: Studies of instructional design and development. In AECT, Ed., Handbook on Research on educational research: Studies on instructional design and development (pp. 1099–1130). Bloomington, IN: Association for Educational Communications and Technology (AECT).

    Google Scholar 

  • Riemeier, T. (2005). Wie Lerner die Zelltheorie besser verstehen lernen: [How learners improve their understanding of the theory of cells]. Beiträge zur Didaktischen Rekonstruktion 7. Oldenburg, Germany: Didaktisches Zentrum, University of Oldenburg.

    Google Scholar 

  • Riemeier, T., & Gropengießer (2008). On the roots of difficulties in learning about cell division: Process-based analysis of students’ conceptual development in teaching experiments. International Journal of Science Education, 30, 923–939

    Google Scholar 

  • Sandoval WA, Bell PL. Design-Based research methods or studying learning in context: Introduction. Educational Psychologist. 2004;39(4):199–201.

    Article  Google Scholar 

  • Schwanewedel, J., Hößle, C., & Kattmann, U. (2007). Students’ understanding of socio-scientific issues - Conceptions of health and genetic disease. In ESERA (European Science Education Research Association), Ed., ESERA 2007 International Conference. Malmö. Sweden: Malmö University (CD-ROM); 2007.

    Google Scholar 

  • Scheffel, L. (2010). Didaktische Rekonstruktion des Basiskonzepts Struktur-Eigenschaftsbeziehungen. [Educational Reconstruction of the basic concept structure-property-relations.] Oldenburg, Germany: bis-Verlag.

    Google Scholar 

  • Scheffel L, Brockmeier W, Parchmann I. Historical material in micro-macro-thinking. Conceptual change in chemistry education and in the history of chemistry. In: Gilbert J, Treagust D, editors. Multiple representations in chemical education (pp. 215–250).: Springer; 2009.

    Google Scholar 

  • Schmidt, S. (2011). Didaktische Rekonstruktion des Basiskonzepts ‘Stoff-Teilchen’ für den Anfangsunterricht nach Chemie im Kontext. [Educational Reconstruction of the basic concepts matter and particle for introductory chemistry classes following the Chemie im Kontext approach] Oldenburg, Germany: bis-Verlag.

    Google Scholar 

  • Schmidt, S., Rebentisch, D., & Parchmann, I. (2003). Chemie im Kontext auch für die Sekundarstufe I - Cola und Ketchup im Anfangsunterricht. [Chemistry in Context for introductory chemistry classes.] Chemkom, 10(1), 6–17.

    Google Scholar 

  • Shulman LS. Knowledge and teaching: Foundations of the new reform. Harvard Educational Review. 1987;57(1):1–21.

    Google Scholar 

  • Smith C, Wiser M, Anderson CW, Krajzik J. Implications for children’s learning for assessment: A proposed learning progression for matter and atomic molecular theory. Measurement. 2006;14(1&2):1–98.

    Google Scholar 

  • Stavrou D, Duit R, Komorek M. A teaching and learning sequence about the interplay of chance and determinism in nonlinear systems. Physics Education. 2008;43:417–422.

    Article  Google Scholar 

  • Steffe L, D’Ambrosio B. Using teaching experiments to understand students’ mathematics. In: Treagust D, Duit R, Fraser B, editors. Improving teaching and learning in science and mathematics. New York: Teacher College Press; 1996. p. 65–76.

    Google Scholar 

  • Tiberghien A, Vince J, Gaidioz P. Design-based Research: Case of a teaching sequence on mechanics. International Journal of Science Education. 2009;31:2275–2314.

    Article  Google Scholar 

  • Treagust DF, Duit R. Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies in Science Education. 2008;3:297–328.

    Article  Google Scholar 

  • Strike, K.A., & Posner, G.J. (1992). A revisionist theory of conceptual change. In R.A. Duschl & R.J Hamilton, Eds., Philosophy of science, cognitive psychology, and educational theory and practice (pp. 171-176). Albany, NY: State University of New York Press.

    Google Scholar 

  • Tytler, R. (2007). Re-imaging science education. Camberville, Victoria: Australian Council for Educational Research (ACER).

    Google Scholar 

  • Van Dijk E, Kattmann U. A research model for the study of science teachers’ PCK and improving teacher education. Teaching and Teacher Education. 2007;23:885–897.

    Article  Google Scholar 

  • Verhoeff RP. Towards systems thinking in cell biology education. Utrecht, The Netherlands: CD-ß Press; 2003.

    Google Scholar 

  • Vosniadou S. Towards a revised cognitive psychology for new advances in learning and instruction. Learning and Instruction. 1996;6:95–109.

    Article  Google Scholar 

  • Vosniadou S, editor. International handbook of research on conceptual change. New York, London: Routledge; 2008.

    Google Scholar 

  • Weitzel, H., & Gropengießer, H. (2003). Anpassung verstehen lernen heißt Evolution verstehen lernen. Didaktisch rekonstruierte Lernangebote zur Anpassung [Understanding adaptation means to understand evolution - educationally reconstructed learning materials on adaptation]. In A. Bauer et al., Eds., Entwicklung von Wissen und Kompetenzen im Biologieunterricht (pp. 221–224). Kiel, Germany: Leibniz-Institute for Science and Mathematics Education (IPN).

    Google Scholar 

  • Widodo, A. (2004). Constructivist oriented lessons. Frankfurt am Main, Germany: Peter Lang.

    Google Scholar 

  • Wright, E. (1993). The irrelevancy of science education research: perception or reality? NARST News, 35(1), 1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Sense Publishers

About this chapter

Cite this chapter

Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., Parchmann, I. (2012). The Model of Educational Reconstruction – a Framework for Improving Teaching and Learning Science1 . In: Jorde, D., Dillon, J. (eds) Science Education Research and Practice in Europe. Cultural Perpectives in Science Education, vol 5. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6091-900-8_2

Download citation

Publish with us

Policies and ethics