Skip to main content

Auriferous hydrothermal precipitates on the modern seafloor

  • Chapter
Gold Metallogeny and Exploration

Abstract

Submarine hot springs were probable sources for gold enrichment in a variety of rock types which host mineable gold deposits. These include iron formations, mixed chemical and clastic sediments, tuffaceous exhalites, and disseminated or massive sulphides in both volcanic-and sediment-dominated sequences. Gold-bearing iron formations and interflow metalliferous sediments associated with seafloor hydrothermal activity also have been implicated as potential source rocks for some nonstratabound gold deposits in ancient greenstone belts (Foster and Wilson, 1984; Keays, 1984). Recent studies of gold in volcanogenic massive sulphides indicate a strong genetic relationship between gold and sulphide mineralization in seafloor hydrothermal systems (Hannington and Scott, 1989; Large et al., 1989; Huston and Large, 1989). The total past production and current reserves of gold in massive sulphides world wide amount to nearly 2900 t Au and indicate that modified seawater is capable of transporting and depositing significant amounts of gold. In addition, the discovery of gold-rich sulphides actively forming at hydrothermal vents on the modern seafloor has confirmed the existence of gold-bearing fluids in submarine hot springs and supports a seafloor hydrothermal origin for gold in many preserved deposits now on land. The documentation of fluid chemistry at active vents also has served to constrain the conditions of gold mineralization on the present-day seafloor. In this chapter, we describe the occurrence and distribution of gold in modern hot spring deposits and discuss aspects of gold transport and deposition in seafloor hydrothermal systems with reference to possible implications for the origin of gold deposits in auriferous chemical sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt, J.C. (1988) The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green Seamount, Eastern Pacific. Econ. Geol. 83, 1026–1033.

    Google Scholar 

  • Alt, J.C., Lonsdale, P., Haymon, R. and Muehlenbachs, K. (1987) Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geol. Soc. Amer. Bull. 98, 157–168.

    Google Scholar 

  • Alt, J.C., Muehlenbachs, K. and Honnorez, J. (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth Planet. Sci. Letters 80, 217–229.

    Google Scholar 

  • ASHES Expedition (1986) Pisces submersible exploration of a high-temperature vent field in the caldera of Axial Seamount [abs.]. Amer. Geophys. Union Trans. 67, 1027.

    Google Scholar 

  • Backer, H. (1976) Fazies und chemische zusammensetzung rezenter ausfallungen aus mineralquellen in Roten Meer. Geol. Jahrb. 17, 151–172.

    Google Scholar 

  • Baker, E.T., and Massoth, G.J. (1986) Hydrothermal plume measurements: a regional perspective. Science 234, 980–982.

    Google Scholar 

  • Baker, E.T. and Massoth, G.J. (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet. Sci. Lett. 85, 59–73.

    Google Scholar 

  • Bear, L.M. (1963) The mineral resources and mining industry of Cyprus. Nicosia, Cyprus, Ministry Commerce Industry, Geol. Surv. Dept., Bull. 1.

    Google Scholar 

  • Bischoff, J.L., Radtke, A.S. and Rosenbauer, R.J. (1981) Hydrothermal alteration of graywacke by brine and seawater: Roles of alteration and chloride complexing on metal solubilization at 200°C and 350°C. Econ. Geol. 76, 659–676.

    Google Scholar 

  • Bischoff, J.L., Rosenbauer, R.J., Aruscavage, P.J., Baedecker, P.A. and Crock, J.G. (1983) Sea-floor massive sulfide deposits from 21°N, East Pacific Rise; Juan de Fuca Ridge; and Galapagos Rift: Bulk chemical composition and economic implications. Econ. Geol. 78, 1711–1720.

    Google Scholar 

  • Bowers, T.S., Campbell, A.C., Measures, C.I., Spivack, A.J. and Edmond, J.M. (1988) Chemical controls on the composition of vent fluids at 13°N-11°N and 21°N, East Pacific Rise. J. Geophys. Res. 93, 4522–4536.

    Google Scholar 

  • Bowers, T.S., Von Damm, K.L. and Edmond, J.M. (1985) Chemical evolution of mid-ocean ridge hot springs. Geochim. Cosmochim. Acta 49, 2239–2252.

    Google Scholar 

  • Boyle, R.W. (1979) The geochemistry of gold and its deposits. Geol. Surv. of Can., Bull. 280.

    Google Scholar 

  • Brown, K.L. (1986) Gold deposition from geothermal discharges in New Zealand. Econ. Geol. 81, 979–983.

    Google Scholar 

  • Browne, P.R.L. and Ellis, A.J. (1970) The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related chemistry. Amer. J. Sci. 296, 97–131.

    Google Scholar 

  • Campbell, A.C., Bowers, T.S., and Edmond, J.M. (1988a) A times-series of vent fluid compositions from 21°N, EPR (1979, 1981, 1985) and the Guaymas Basin, Gulf of California (1982, 1985). J. Geophys. Res. 93, 4537–4549.

    Google Scholar 

  • Campbell, A.C., Edmond, J.M., Colodner, D., Palmer, M.R. and Falkner, K.K. (1987) Chemistry of hydrothermal fluids from the Mariana Trough back arc basin in comparison to mid-ocean ridge fluids [abs.]. Amer. Geophys. Union Trans. 68, 1531.

    Google Scholar 

  • Campbell, A.C., German, C., Palmer, M.R. and Edmond, J.M. (1988b) Preliminary report on the chemistry of hydrothermal fluids from the Escanaba Trough [abs]. Amer. Geophys. Union Trans. 69, 1271.

    Google Scholar 

  • Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., Bowers, T.S., Edmond, J.M., Lawrence, J.R., Casey, J.F., Thompson, G., Humphris, S., Rona, P. and Karson, J.A. (1988c) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335, 514–519.

    Google Scholar 

  • Campbell, I.H., McDougall, T.J. and Turner, J.S. (1984) A note on fluid dynamic processes which can influence the deposition of massive sulfides. Econ. Geol. 79, 1905–1913.

    Google Scholar 

  • Canadian Mines Handbook (1987–1988), ed. Gardiner, C.D. Northern Miner Press Ltd., Toronto.

    Google Scholar 

  • CASM II (1985) Hydrothermal vents on an axis seamount of the Juan de Fuca Ridge. Nature 313, 212–214.

    Google Scholar 

  • Cathles, L.M. (1981) Fluid flow and genesis of hydrothermal ore deposits. Econ. Geol., 75th Anniv. Vol., 424–457.

    Google Scholar 

  • Cathles, L.M. (1983) An analysis of the hydrothermal system responsible for massive sulfide deposition in the Hokuroku Basin of Japan. Econ. Geol. Mon. 5, 439–487.

    Google Scholar 

  • Cathles, L.M. (1986) The geologic solubility of gold from 200–350°C and its implications for gold-base metal ratios in vein and stratiform deposits. Can. Inst. of Mining and Metallurgy, Special Vol. 38, 187–211.

    Google Scholar 

  • Constantinou, G. (1973) Geology, geochemistry, and genesis of Cyprus sulphide deposits. Econ. Geol. 68, 843–858.

    Google Scholar 

  • Constantinou, G., and Govett, G.J.S. (1972) Genesis of sulphide deposits, ochre and umber of Cyprus. Trans. Inst. Min. Mettall. (Sect. B, Appl. Earth Sci.) 81, 34–36.

    Google Scholar 

  • Converse, D.R., Holland, H.D. and Edmond, J.M. (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. Letters 69, 159–175.

    Google Scholar 

  • Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P. and van Andel, T.H. (1979) Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083.

    Google Scholar 

  • Craig, H., Horibe, Y., Farley, K.A., Welhan, J.A., Kim, K.-R. and Hey, R.N. (1987) Hydrothermal vents in the Mariana Trough: Results of the first Alvin dives [abs.]. Amer. Geophys. Union Trans. 68, 1531.

    Google Scholar 

  • CYAMEX (1979) Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature 277, 523–528.

    Google Scholar 

  • Davis, E.E., Goodfellow, W.D., Bomhold, B.D., Adshead, J., Blaise, B., Villinger, H. and Le Cheminant, G.M. (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planet. Sci. Letters 82, 49–61.

    Google Scholar 

  • Degens, E.T. and Ross, D.A., eds. (1969) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer-Verlag, New York.

    Google Scholar 

  • Divi, S.R., Thorpe, R.I. and Franklin, J.M. (1980) Use of discriminant analysis to evaluate compositional controls of stratiform massive sulfide deposits in Canada. Can. Geol. Surv., Paper 79–20.

    Google Scholar 

  • Edmond, J.M., Measures, C.I., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I. and Corliss, J.B. (1979a) Ridge crest hydrothermal activity and the balance of the major and minor elements in the ocean: The Galapagos data. Earth Planet. Sci. Letters 46, 1–18.

    Google Scholar 

  • Edmond, J.M., Measures, C., Mangum, B., Grant, B., Sclater, F.R., Collier, R., Hudson, A., Gordon, L.I. and Corliss, J.B. (1979b) On the formation of metal-rich deposits at ridge crests. Earth Planet. Sci. Letters 46, 19–30.

    Google Scholar 

  • Edmond, J.M., Von Damm, K.L., McDuff, R.E. and Measures, C.I. (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–191.

    Google Scholar 

  • Eldridge, C.S., Barton, P.B., Jr. and Ohmoto, H. (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ. Geol. Mon. 5, 241–281.

    Google Scholar 

  • Embley, R.W., Jonasson, I.R., Perfit, M.R., Franklin, J.M., Tivey, M.A., Malahoff, A., Smith, M.F. and Francis, T.J.G. (1988) Submersible investigation of an extinct hydrothermal system on the Galpagos Ridge: Sulfide mounds, stockwork zone, and differentiated lavas. Can. Mineral. 26, 517–539.

    Google Scholar 

  • Foster, R.P. and Wilson, J.F. (1984) Geological setting of Archaean gold deposits in Zimbabwe. In The Geology, Geochemistry, and Genesis of Gold Deposits, Proc. of Gold ’82, Harare, Zimbabwe, ed. Foster, R.P. Balkema, Rotterdam, 521–551.

    Google Scholar 

  • Fouquet, Y., Auclair, G., Cambon, P. and Etoubleau, J. (1988) Geological setting, mineralogical and geochemical investigations on sulfide deposits near 13° North, on the East Pacific Rise. Marine Geol. 84, 145–178.

    Google Scholar 

  • Franklin, J.M. (1986) Volcanic associated massive sulfide deposits — an update. Irish Assoc. of Econ. Geol., Special Pub. 4, 49–69.

    Google Scholar 

  • Franklin, J.M., Lydon, J.W. and Sangster, D.F. (1981) Volcanic-associated massive sulfide deposits. Econ. Geol., 75th Anniv. Vol., 458–627.

    Google Scholar 

  • Fripp, R.E.P. (1976) Stratabound gold deposits in Archean banded iron formation, Rhodesia. Econ. Geol. 71, 58–75.

    Google Scholar 

  • Fyfe, W.S. and Kerrich, R. (1984) Gold: Natural concentration processes. In The Geology, Geochemistry, and Genesis of Gold Deposits, Proc. of Gold ’82, Harare, Zimbabwe, ed. Foster, R.P. Balkema, Rotterdam, 99–126.

    Google Scholar 

  • Gammons, C.H. and Barnes, H.L. (1989) The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300°C. Geochim. Cosmochim. Acta 53, 279–290.

    Google Scholar 

  • GARIMAS I Cruise Report (1986) Galapagos Rift massive sulfides (SO-32). Preussag Marine Technology, Hannover.

    Google Scholar 

  • GARIMAS II Cruise Report (1987) Galapagos Rift massive sulfides (SO-39). Preussag Marine Technology, Hannover.

    Google Scholar 

  • Giggenbach, W.F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032.

    Google Scholar 

  • Giggenbach, W.F. (1981) Geothermal mineral equilibria. Geochim. Cosmochim. Acta 45, 393–410.

    Google Scholar 

  • Goldfarb, M.S., Converse, D.R., Holland, H.D. and Edmond, J.M. (1983) The genesis of hot spring deposits on the East Pacific Rise, 21°N. Econ. Geol. Mon. 5, 184–197.

    Google Scholar 

  • Goodfellow, W.D. and Blaise, B. (1988) Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan de Fuca Ridge. Can. Mineral. 26, 675–696.

    Google Scholar 

  • Grimaud, D., Michard, A. and Michard, G. (1984) Composition chimique et composition isotopique du strontium dans les eaux hydrothermals sous-marines de la dorsale Est Pacifique à 13° Nord. C.R. Acad. Sc. Paris 299, Serie II, no.13, 865–870.

    Google Scholar 

  • Hackett, J.P. and Bischoff, J.L. (1973) New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ. Geol. 68, 553–564.

    Google Scholar 

  • Halbach, P., Nakamura, K., Wahsner, M., Lange, J., Sakai, H., Kaselitz, L., Hansen, R.-D., Yamano, M., Post, J., Prause, B., Seifert, R., Michaelis, W., Teichmann, F., Kinoshita, M., Marten, A., Ishibashi, J., Czerwinski, S. and Blum, N. (1989) Probable modern anlogue of Kuroko-type massive sulphide deposits in the Okinanwa Trough back-arc basin. Nature 338, 496–499.

    Google Scholar 

  • Hall, G.E.M., Vaive, J., Hannington, M.D., McConachy, T.F. and Scott, S.D. (1988) Gold and associated trace elements in vent waters and suspended particulates from Southern Explorer Ridge [abs.]. Amer. Geophys. Union Trans. 69, 1501.

    Google Scholar 

  • Hannington, M.D. and Scott, S.D. (1988) Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can. Mineral. 26, 603–625.

    Google Scholar 

  • Hannington, M.D. and Scott, S.D. (1989) Gold mineralization in volcanogenic massive sulfides: Implications of data from active hydrothermal vents on the modern seafloor. Econ. Geol. Mon. 6. Proceedings of Gold ’88, Melbourne, Australia 491–507.

    Google Scholar 

  • Hannington, M.D., Herzig, P.M. and Alt, J.C. (1988a) The distribution of gold in sub-seafloor stockwork mineralization from DSDP Hole 504B and the Agrokipia B deposit, Cyprus [abs.]. Geol. Assoc. Can. Program Abstr. 13, A51–A52.

    Google Scholar 

  • Hannington, M.D., Herzig, P.M., Scott, S.D., Thompson, G. and Rona, R.A. (1989) The mineralogy and geochemistry of gold-bearing polymetallic sulfides from seafloor spreading centers in the N.E. Pacific and Mid-Atlantic (submitted).

    Google Scholar 

  • Hannington, M.D., Peter, J.M. and Scott, S.D. (1986) Gold in sea-floor polymetallic sulfide deposits. Econ. Geol. 81, 1867–1883.

    Google Scholar 

  • Hannington, M.D., Thompson, G., Rona, P.A. and Scott, S.D. (1988b) Gold and native copper in supergene sulfides from the Mid-Atlantic Ridge. Nature 333, 64–66.

    Google Scholar 

  • Harvey-Kelly, F.E.L., Jonasson, I.R., Franklin, J.M. and Embley, R.W. (1988) Sulfide deposits of Axial Seamount: Mineralogy and chemistry [abs.]. Amer. Geophys. Union. Trans. 69, 1499–1500.

    Google Scholar 

  • Haymon, R.M. and Kastner, M. (1981) Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth Planet. Sci. Letters 53, 363–381.

    Google Scholar 

  • Heinrich, C.A. and Eadington, P.J. (1986) Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite—arsenopyrite—base metal sulfide deposits. Econ. Geol. 81, 511–529.

    Google Scholar 

  • Hekinian, R. and Fouquet, Y. (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N Econ. Geol. 80, 221–249.

    Google Scholar 

  • Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Amer. J. Sci. 267, 729–804.

    Google Scholar 

  • Hendricks, R.L., Reisbeck, F.B., Mahaffey, E.J., Roberts, D.B. and Peterson, M.N.A. (1969) Chemical composition of sediments and interstitial brines from the Atlantis II, Discovery and Chain Deeps. In Hot Brines and Recent Heavy Metal Deposits in the Red Sea, eds. Degens, E.T. and Ross, D.A. Springer-Verlag, New York, 407–440.

    Google Scholar 

  • Herzig, P.M., Hannington, M.D., Scott, S.D., Maliotis, G., Thompson, G. and Rona, R.A. (1989) Secondary gold in submarine gossans from the Troodos Ophiolite and the Mid-Atlantic Ridge (submitted).

    Google Scholar 

  • Herzig, P.M., Hannington, M.D., Scott, S.D., Thompson, G. and Rona, P.A. (1988a) Comparison of sulfides from the TAG and Snakepit Hydrothermal Fields (Mid-Atlantic Ridge) and the Troodos Ophiolite (Cyprus) [abs.]. Amer. Geophys. Union Trans. 69, 1488.

    Google Scholar 

  • Herzig, P.M., Hannington, M.D., Scott, S.D., Thompson, G. and Rona, P.A. (1988b) The distribution of gold and associated trace elements in modern submarine gossans from the TAG Hydrothermal Field, Mid-Atlantic Ridge and in ancient ochres from Cyprus [abs.]. Geol. Soc. Amer. Abstr. Programs 20, A240.

    Google Scholar 

  • Honnorez, J., Alt, J.C., Honnorez-Guerstein, B.-M., Laverne, C., Muehlenbachs, K., Ruiz, J. and Saltzman, E. (1985) 10. Stockwork-like sulfide mineralization in young oceanic crust: Deep Sea Drilling Project Hole 504B, In Initial Reports of the Deep Sea Drilling Project LXXXIII, eds. Anderson, R.N. et al. US Govt. Printing Office, Washington, 263–282.

    Google Scholar 

  • Huston, D.L. and Large, R.R. (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol. Rev. 4, 171–200

    Google Scholar 

  • Janecky, D.R. and Seyfried, W.E. Jr. (1984) Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim. Cosmochim. Acta 48, 2723–2738.

    Google Scholar 

  • Jonasson, I.R., Perfit, M.R., Franklin, J.M., Embley, R.W. and Malahoff, A. (1988) Precious metal levels in sulfide and host basaltic lavas from the Galapagos ridge crest at 85°50’W [abs.]. Bicentennial Gold ‘88. Geol. Soc. Aust. Abstr. 23, 596–601.

    Google Scholar 

  • Kalogeropoulos, S.I. and Scott, S.D. (1983) Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroku District, Japan. Econ. Geol. Mon. 5, 412–432.

    Google Scholar 

  • Kalogeropoulos, S.I. and Scott, S.D. (1986) On the genesis of barite associated with volcanogenic massive sulfides, Fukazawa mine, Hokuroku District, Japan. In Geology and Metallogeny of Copper Deposits, eds. Friedrich, G.H. et al. Springer- Verlag, Berlin, 370–388.

    Google Scholar 

  • Kalogeropoulos, S.I. and Scott, S.D. (1989) Mineralogy and geochemistry of an Archean tuffaceous exhalite: The Main Contact Tuff, Millenbach Mine area, Noranda, Quebec. Can. J. Earth Sci. 26, 88–105.

    Google Scholar 

  • Karl, D.M., McMurtry, G.M., Malahoff, A. and Garcia, M.O. (1988) Loihi Seamount, Hawaii: A mid-plate volcano with a distinctive hydrothermal system. Nature 335, 532–535.

    Google Scholar 

  • Kastner, M., Craig, H. and Sturz, A. (1987) Hydrothermal deposition in the Mariana Trough: Preliminary mineralogical investigation [abs.]. Amer. Geophys. Union Trans. 68, 1531.

    Google Scholar 

  • Kawahata, H. and Shikazono, N. (1988) Sulfur isotope and total sulfur studies of basalts and greenstones from DSDP Hole 504B, Costa Rica Rift: Implications for hydrothermal alteration.Can. Mineral. 26, 555–566.

    Google Scholar 

  • Keays, R.R. (1984) Archean gold deposits and their source rocks: The upper mantle connection. In The Geology, Geochemistry, and Genesis of Gold Deposits, Proc. of Gold ’82, Harare, Zimbabwe, ed. Foster, R.P. Balkema, Rotterdam, 17–51.

    Google Scholar 

  • Keays, R.R. (1987) Principles of mobilization (dissolution) of metals in mafic and ultramafic rocks — The role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits. Ore Geol. Rev. 2, 47–63.

    Google Scholar 

  • Kimura, M., Uyeda, S., Kato, Y., Tanaka, T., Yamano, M., Gamo, T., Sakai, H., Kato, S., Izawa, E. and Oomori, T. (1988) Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Tectonophys. 145, 319–324.

    Google Scholar 

  • Koski, R.A., Clague, D.A. and Oudin, E. (1984) Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geol. Soc. of Amer., Bull. 95, 930–945.

    Google Scholar 

  • Koski, R.A., Lonsdale, P.F., Shanks, W.C. III, Berndt, M.E. and Howe, S.S. (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California. J. Geophys. Res. 90, 6695–6707.

    Google Scholar 

  • Koski, R.A., Shanks, W.C. III, Bohrson, W.A. and Oscarson, R.L. (1988) The composition of massive sulfide deposits from the sediment-covered floor of Escanaba Trough, Gorda Ridge: Implications for depositional processes. Can. Mineral. 26, 655–673.

    Google Scholar 

  • Krupp, R.E. and Seward, T.M. (1987) The Rotokawa geothermal systems, New Zealand: An active epithermal gold-depositing environment. Econ. Geol. 82, 1109–1129.

    Google Scholar 

  • Large, R.R., Huston, D.L., McGoldrick, P.J., Ruxton, P.A. and McArthur, G. (1989) Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and significance for gold transport models. Econ. Geol. Mon. 6, Proc. of Gold ’88, Melbourne, Australia, 520–536.

    Google Scholar 

  • Lonsdale, P. and Becker, K. (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet. Sci. Lett. 73, 211–225.

    Google Scholar 

  • Lonsdale, P. and Hawkins, J.W. (1985) Silicic volcanism at an off-axis geothermal field in the Mariana Trough back-arc basin. Geol. Soc. Amer., Bull. 96, 940–951.

    Google Scholar 

  • Lonsdale, P., Bischoff, J.L., Burns, V.M., Kastner, M. and Sweeney, R.E. (1980) A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth Planet. Sci. Lett. 49, 8–20.

    Google Scholar 

  • Lupton, P., Delaney, J.R., Johnson, H.P., and Tivey, M.K. (1985) Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature 316, 621–623.

    Google Scholar 

  • Macdougall, J.D., Volpe, A. and Hawkins, J.W. (1987) An arc-like component in Mariana Trough basalts [abs.]. Amer. Geophys. Union Trans. 68, 1531.

    Google Scholar 

  • McConachy, T.F. (1988) Hydrothermal plumes and related deposits over spreading ridges in the northeast Pacific Ocean: The East Pacific Rise near 11 °N and 21°N, Explorer Ridge, and the J. Tuzo Wilson Seamounts. Unpub. Ph.D. thesis, Univ. of Toronto.

    Google Scholar 

  • McConachy, T.F. and Scott, S.D. (1987) Real-time mapping of hydrothermal plumes above Southern Explorer Ridge, N.E. Pacific Ocean. Marine Mining, 6, 181–204.

    Google Scholar 

  • McConachy, T.F., Ballard, R.D., Mottl, M.J. and Von Herzen, R.P. (1986) Geologic form and setting of a hydrothermal vent field at lat 10°56’N, East Pacific Rise: A detailed study using Angus and Alvin. Geology 14, 295–298.

    Google Scholar 

  • McDuff, R.E., Edmond, J.M., Juniper, K., Lupton, J.E. and Scott, S.D. (1983) The chemistry of hydrothermal water, Axial Seamount, Juan de Fuca Ridge [abs.]. Amer. Geophys. Union Trans. 64, 723.

    Google Scholar 

  • Merlivat, L., Pineau, F. and Javoy, M., 1987, Hydrothermal vent waters at 13°N on the East Pacific Rise: Isotopic composition and gas concentration. Earth Planet. Sci. Lett. 84, 100–108.

    Google Scholar 

  • Michard, G., Albarede, F., Michard, A., Minster, J.F., Charlou, J.-L. and Tan, N. (1984) Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth Planet. Sci. Letters 67, 297–307.

    Google Scholar 

  • Miyashiro, A. (1973) The troodos ophiolite complex was probably formed in an island arc. Earth Planet. Sci. Letters 19, 218–224.

    Google Scholar 

  • Moores, E.M., Robinson, P.T., Malpas, J. and Xenophanas, C. (1984) Model for the origin of the Troodos massif, Cyprus, and other mideast ophiolites. Geology 12, 500–503.

    Google Scholar 

  • Morton, J.L. and Sleep, N.H. (1985) A mid-ocean ridge thermal model: Constraints on the volume of axial heat flux. Geophys. Res. 90, 11345–11353.

    Google Scholar 

  • Morton, J.L., Holmes, M.L. and Koski, R.A. (1987) Volcanism and massive sulfide formation at a sedimented spreading center, Escanaba Trough, Gorda Ridge, northeast Pacific Ocean. Geophys. Res. Letters 14, 769–772.

    Google Scholar 

  • Mosier, D.L., Singer, D.A. and Salem, B.B. (1983) Geologic and grade-tonnage information on volcanic-hosted copper-zinc-lead massive sulfide deposits. US Geol. Surv., Open-File Report 83–89.

    Google Scholar 

  • Mottl, M.J. (1983) Metabasalts, axial hot-springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. of Amer., Bull. 94, 161–180.

    Google Scholar 

  • Mottl, M.J., Holland, H.D. and Com, R.F. (1979) Chemical exchange during hydrothermal alteration of basalt - II. Experimental results for Fe, Mn, and sulfur species. Geochim. Cosmochim. Acta 43, 869–884.

    Google Scholar 

  • Mottl, M.J. and McConachy, T.F. (in press) Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N. Geochim. Cosmochim. Acta (submitted).

    Google Scholar 

  • Mustafa, H.E.Z., Nawab, Z., Horn, R. and Le Lann, F. (1984) Economic interest of hydrothermal deposits: Atlantis II Project. In Proc. 2nd Internat. Seminar on Offshore Mineral Resources. Centre Oceanologique de Bretagne, Group d’Etude et de Recherche de Mineralisations au Large, Brest, France, 509–539.

    Google Scholar 

  • Nawab, Z.A. (1984) Red Sea mining: a new era. Deep-Sea Res. 31, 813–822.

    Google Scholar 

  • Nelsen, T.A., Metz, S., Trefry, J. and Pimmel, A. (1986) Sedimentology and composition of sediment near a black smoker field on the Mid-Atlantic Ridge [abs.]. Amer. Geophys. Union Trans. 67, 1022.

    Google Scholar 

  • Nesbitt, B.E., St. Louis, R.M. and Muehlenbachs, K. (1987) Distribution of gold in altered basalts of DSDP Hole 504B. Can. J. Earth Sci. 24, 201–209.

    Google Scholar 

  • Oudin, E. (1981) Etudes mineralogiques et geochemique des depots sulfures sous-marins actuel de la ride est-pacifique (21N). Documents du Bureau de Recerches Geologiques et Minieres 25.

    Google Scholar 

  • Oudin, E. (1987) Geochemistry of submarine sulphides. In Marine Minerals: Resource Assessment Strategies, Proc. NATO Advanced Research Workshop, Series C 194, eds. Teleki, P.G., Dobson, M.R., Moore, J.R. and von Stackelberg, U. Reidel, Boston, 349–362.

    Google Scholar 

  • Oudin, E., Thisse, Y. and Ramboz, C. (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediments: Preliminary results. Marine Mining 5, 3–31.

    Google Scholar 

  • Peter, J.M. and Scott, S.D. (1988) Mineralogy, composition, and fluid inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can. Mineral. 26, 567–588.

    Google Scholar 

  • Phillips, G.N., Groves, D.I. and Martyn, J.E. (1984) An epigenetic origin for banded iron formation-hosted gold deposits. Econ. Geol. 79, 162–171.

    Google Scholar 

  • Piper, D.Z. and Graef, P.A. (1974) Gold and rare-earth elements in sediments from the East Pacific Rise. Marine Geol. 17, 287–297.

    Google Scholar 

  • Pottorf, R.J. and Barnes, H.L. (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ. Geol. Mon. 5, 198–223.

    Google Scholar 

  • Quinby-Hunt, M.S., Wilde, P., Corrigan, D. and Dengler, A.T. (1986) Very recent analogs of volcanogenic Archean sequences. Geology 14, 48–51.

    Google Scholar 

  • Ramboz, C., Oudin, E. and Thisse, Y. (1988) Geyser-type discharge in the Atlantis II Deep, Red Sea: Evidence from of boiling from fluid inclusions in epigenetic anhydrite. Can. Mineral. 26, 765–786.

    Google Scholar 

  • Renders, P.J. and Seward, T.M. (1989) The adsorption of thio gold(I) complexes by amorphous As2S3 and Sb2S3 at 25 and 90°C. Geochim. Cosmochim. Acta 53, 255–267.

    Google Scholar 

  • Ridler, R.H. and Shilts, W.W. (1974) Mineral potential of the Rankin Inlet, Ennadai Belt. Can. Mining. J. 95, 32–42.

    Google Scholar 

  • RISE Project (1980) East Pacific Rise: Hot springs and geophysical experiments. Science 207, 1421–1433.

    Google Scholar 

  • Robertson, A.H.F. (1976) Origins of ochres and umbers: evidence from Skouriotissa, Troodos Massif, Cyprus. Trans. Inst. Min. Metall. (Section B, Applied Earth Science) 85, 245–251.

    Google Scholar 

  • Rona, P.A. (1988) Hydrothermal mineralization at oceanic ridges. Can. Mineral. 26, 431–465.

    Google Scholar 

  • Rona, P.A., Klinkhammer, G., Nelsen, T.A., Tefry, J.H. and Elderfield, H. (1986) Black smokers, massive sulfides, and vent biota at the Mid-Atlantic Ridge. Nature 321, 33–37.

    Google Scholar 

  • Rosenbauer, R.J. and Bischoff, J.L. (1983) Uptake and transport of heavy metals by heated seawater: A summary of the experimental results. In Hydrothermal Processes at Seafloor Spreading Centers, NATO Conference, Series IV, Marine Sciences 12, eds. Rona, P.A., Bostrom, K., Laubier, L. and Smith, K.L. Jr. Plenum, New York, 177–198.

    Google Scholar 

  • Saager, R., Meyer, M. and Muff, R. (1982) Gold distribution in supracrustal rocks from Archean greenstone belts of Southern Africa and from Paleozoic ultramafic complexes of the European Alps: Metallogenic and geochemical implications. Econ. Geol. 77, 1–24.

    Google Scholar 

  • Sangster, D.F. and Scott, S.D. (1976) Precambrian strata-bound massive Cu—Zn—Pb sulfide ores of North America. In Handbook of Strata-Bound and Stratiform Ore Deposits 6, ed. Wolf, K.H. Elsevier, New York, 129–222.

    Google Scholar 

  • Sawkins, F.J. (1984) Metal Deposits in Relation to Plate Tectonics. Springer-Verlag, New York.

    Google Scholar 

  • Schroeder, B., Thompson, G., Humphris, S.E., Sulanowska, M. and Rona, P.A. (1986) Hydrothermal mineralization, TAG area, Mid- Atlantic Ridge 26°N [abs.]. Amer. Geophys. Union Trans. 67, 1022.

    Google Scholar 

  • Scott, S.D. (1985) Seafloor polymetallic sulfide deposits: Modern and ancient. Marine Mining 5, 191–212.

    Google Scholar 

  • Scott, S.D. (1987) Seafloor polymetallic sulfides: Scientific curiosities or mines of the future? In Marine Minerals: Resource Assessment Strategies, Proc. NATO Advanced Research Workshop, Series C 194, eds. Teleki, P.G., Dobson, M.R., Moore, J.R. and von Stackelberg, U. Reidel, Boston, 277–300.

    Google Scholar 

  • Scott, S.D., Chase, R.L., Hannington, M.D., Michael, P.J., McConachy, T.F. and Shea, G.T. (1989) Sulfide deposits, tectonics, and petrogenesis of Southern Explorer Ridge, northeast Pacific Ocean. Proc. Troodos ’87, Ophiolite Symposium Volume (in press).

    Google Scholar 

  • Seyfried, W.E. Jr. (1987) Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Ann. Rev. Earth Planet. Sci. 15, 317–335.

    Google Scholar 

  • Seyfried, W.E. Jr. and Janecky, D.R. (1985) Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochim. Cosmchim. Acta 49, 2545–2560.

    Google Scholar 

  • Seyfried, W.E. Jr. Berndt, M.E. and Seewald, J.S. (1988) Hydrothermal alteration processes at mid-ocean ridges: Constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Can. Mineral. 26, 787–804.

    Google Scholar 

  • Seward, T.M. (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta 37, 379–399.

    Google Scholar 

  • Seward, T.M. (1976) The stability of chloride complexes of silver in hydrothermal solutions up to 350°C. Geochim. Cosmochim. Acta 40, 1329–1341.

    Google Scholar 

  • Seward, T.M. (1984) The transport and deposition of gold in hydrothermal systems. In The Geology, Geochemistry, and Genesis of Gold Deposits, Proc. of Gold ’82, Harare, Zimbabwe, ed. Foster, R.P. Balkema, Rotterdam, 165–181.

    Google Scholar 

  • Shanks, W.C. III and Bischoff, J.L. (1977) Ore transport and deposition in the Red Sea geothermal systems: A geochemical model. Geochim. Cosmochim. Acta 41, 1507–1519.

    Google Scholar 

  • Shanks, W.C. III and Bischoff, J.L. (1980) Geochemistry, sulfur isotope composition, and accumulation rates of the Red Sea geothermal deposits. Econ. Geol. 75, 445–459.

    Google Scholar 

  • Shenberger, D.M. and Barnes, H.L. (1989) Gold solubility in aqueous sulfide solutions from 150 to 350°C. Geochim. Cosmichim. Acta 53, 269–278.

    Google Scholar 

  • Styrt, M.M., Brackmann, A.J., Holland, H.D., Clark, B.C., Pisutha-Arnond, V., Eldridge, E.S. and Ohmoto, H. (1981) The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet. Sci. Letters 53, 382–390.

    Google Scholar 

  • Sugaki, A., Scott, S.D., Hayashi, K. and Kitakaze, A. (1987) Ag2S solubility in sulfide solutions up to 250°C. Geochem. J. 21, 291–305.

    Google Scholar 

  • Taube, A. (1986) The Mount Morgan gold-copper mine and environment, Queensland: A volcanogenic massive sulfide deposit associated with penecontemporaneous faulting. Econ. Geol. 81, 1322–1340.

    Google Scholar 

  • Thompson, G., Humphris, S.E., Schroeder, B., Sulanowska, M. and Rona, P.A. (1988) Hydrothermal mineralization on the Mid-Atlantic Ridge. Can. Mineral. 26, 697–712.

    Google Scholar 

  • Thornton, E.C. and Seyfried, W.E. Jr. (1987) Reactivity of organic-rich sediment in seawater at 350°C, 500 bars: Experimental and theoretical constraints and implications for the Guaymas Basin hydrothermal system. Geochim. Cosmochim. Acta 51, 1997–2010.

    Google Scholar 

  • Tufar, W., Tufar, E. and Lange, J. (1986) Ore paragenesis of recent hydrothermal deposits at the Cocos-Nazca plate boundary (Galapagos Rift) at 85° 51’ and 85° 55’W: complex massive sulfide mineralizations, non-sulfidic mineralizations and mineralized basalts. Geol. Rundschau 75, 829–861.

    Google Scholar 

  • Tunnicliffe, V., Botros, M., de Burgh, M.E., Dinet, A., Johnson, H.P., Juniper, S.K. and McDuff, R.E. (1986) Hydrothermal vents of Explorer Ridge, northeast Pacific. Deep Sea Res. 33, 401–412.

    Google Scholar 

  • US Geological Survey Study Group (1986) Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: Preliminary observations from the submersible Alvin. Geology 14, 823–827.

    Google Scholar 

  • Von Damm, K.L. (1983) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise and Guaymas basin, Gulf of California. Unpub. Ph.D. thesis, Massachusetts Inst. Technology/Woods Hole Oceanograph. Inst.

    Google Scholar 

  • Von Damm, K.L. (1988) Systematics of and postulated controls on submarine hydrothermal solution chemistry. J. Geophys. Res. 93, 4551–4561.

    Google Scholar 

  • Von Damm, K.L. and Bischoff, J.L. (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge.J. Geophys. Res. 92, 11334–11346.

    Google Scholar 

  • Von Damm, K.L., Edmond, J.M., Grant, B. and Measures, C.I. (1985a) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220.

    Google Scholar 

  • Von Damm, K.L., Edmond, J.M., Measures, C.I. and Grant, B. (1985b) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 49, 2221–2237.

    Google Scholar 

  • Walther, P. and Stoffers, P. (1985) Chemical characteristics of metalliferous sediments from eight areas on the Galapagos Rift and East Pacific Rise between 2°N and 24°N. Marine Geol. 65, 271–287.

    Google Scholar 

  • Weissberg, B.G., Browne, P.R.L. and Seward, T.M. (1979) Ore metals in active geothermal systems. In Geochemistry of Hydrothermal Ore Deposits (2nd edn.), ed. Barnes, H.L. Wiley, New York, 738–780.

    Google Scholar 

  • Welhan, J.A. and Craig, H. (1983) Methane, hydrogen, and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In Hydrothermal Processes at Seafloor Spreading Centers, Proc. NATO Advanced Research Institute, Series IV, 12, eds. Rona, P.A., Bostrom, K., Lanbier, L. and Smith, K.L.Jr. Plenum Press, New York, 391–409.

    Google Scholar 

  • Zierenberg, R.A. and Shanks, W.C. III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Econ. Geol. 78, 57–72.

    Google Scholar 

  • Zierenberg, R.A. and Shanks, W.C. III (1986) Isotopic constraints on the origin of the Atlantis II, Suakin, and Valdivia brines, Red Sea. Geochim. Cosmochim. Acta 50, 2205–2214.

    Google Scholar 

  • Zierenberg, R.A. and Shanks, W.C. III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can. Mineral. 26, 737–753.

    Google Scholar 

  • Zierenberg, R.A., Shanks, W.C. and Bischoff, J.L. (1984) Massive sulfide deposits at 21°N, East Pacific Rise: Chemical composition, stable isotopes, and phase equilibria. Geol. Soc. of Amer., Bull. 95, 922–929.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hannington, M.D., Herzig, P.M., Scott, S.D. (1993). Auriferous hydrothermal precipitates on the modern seafloor. In: Foster, R.P. (eds) Gold Metallogeny and Exploration. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2128-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2128-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-56960-9

  • Online ISBN: 978-94-011-2128-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics