Skip to main content

Mesoscale Modelling of the Arctic Atmospheric Boundary Layer and Its Interaction with Sea Ice

  • Chapter
  • First Online:
Arctic Climate Change

Abstract

This chapter summarises mesoscale modelling studies, which were carried out during the ACSYS decade until 2005. They were aiming at the parameterisation and improved understanding of processes in the Arctic boundary layer over the open ocean and marginal sea ice zones and over the Greenland ice sheet. It is shown that progress has been achieved with the parameterization of fluxes in strong convective situations such as cold-air outbreaks and convection over leads. A first step was made towards the parameterization of the lead-induced turbulence for high-resolution, but non-eddy resolving models. Progress has also been made with the parameterization of the near-surface atmospheric fluxes of energy and momentum modified by sea ice pressure ridges and by ice floe edges. Other studies brought new insight into the complex processes influencing sea ice transport and atmospheric stability over sea ice. Improved understanding was obtained on the cloud effects on the snow/ice surface temperature and further on the near-surface turbulent fluxes. Finally, open questions are addressed, which remained after the ACSYS decade for future programmes having been started in the years after 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affeld B (2003) Zyklonen in der Arktis und ihre Bedeutung für den Eistransport durch die Framstraße. Dissertation, FB Geowissenschaften, Universität Hamburg

    Google Scholar 

  • Alam A, Curry JA (1997) Determination of surface turbulent fluxes over leads in Arctic sea ice. J Geophys Res 102:3331–3344

    Article  Google Scholar 

  • Alestalo M, Savijärvi H (1985) Mesoscale circulations in a hydrostatic model: coastal convergence and orographic lifting. Tellus 37A:156–162

    Article  Google Scholar 

  • Anderson RJ (1987) Wind stress measurements over rough sea ice during the 1984 marginal ice zone experiment. J Geophys Res 92(C7):6933–6941

    Article  Google Scholar 

  • Andreas EL, Cash BA (1999) Convective heat transfer over wintertime leads and polynyas. J Geophys Res 104(C11):25721–25734

    Article  Google Scholar 

  • Andreas EL, Paulson CA, Williams RM, Lindsay RW, Businger JA (1979) The turbulent heat flux from Arctic leads. Boundary Layer Meteorol 17:57–91

    Article  Google Scholar 

  • Andreas EL, Tucker WB, Ackley SF (1984) Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. J Geophys Res 89(NC1):649–661

    Article  Google Scholar 

  • Atkinson BW, Zhang JW (1996) Mesoscale shallow convection in the atmosphere. Rev Geophys 34:403–432

    Article  Google Scholar 

  • Augstein E, Lüpkes C, Hartmann J (2000) Atmospheric boundary layer investigations over the Arctic Ocean, in: Final Report on The Arctic Radiation and Turbulence Interaction Study (ARTIST), Contract Nr. ENV4-CT97-0497-0487 (DG12-ESCY), Bremerhaven, pp 5–21

    Google Scholar 

  • Bange J, Buschmann M, Spiess T, Zittel, Vorsmann P (2002) Umrüstung der Hubschrauber-schleppsonde Helipod, Vorstellung eines einzigartigen meteorologischen Forschungssystems. Deutscher Luft- und Raumfahrtkongress, Stuttgart, 23–26 Sept 2002

    Google Scholar 

  • Birnbaum G (1998) Numerical modelling of the interaction between atmosphere and sea ice in the Arctic marginal sea ice zone. Reports on polar research, vol 268. Alfred Wegener Institute, Bremerhaven

    Google Scholar 

  • Birnbaum G, Lüpkes C (2002) A new parameterization of the surface drag in the marginal sea ice zone. Tellus 54A:107–123

    Google Scholar 

  • Bromwich DH, Cassano JJ, Klein T, Heinemann G, Hines KM, Steffen K, Box JE (2001) Mesoscale modeling of katabatic winds over Greenland with polar MM5. Mon Weather Rev 129:2290–2309

    Article  Google Scholar 

  • Brümmer B (1996) Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Boundary Layer Meteorol 80:109–125

    Article  Google Scholar 

  • Brümmer B (1997) Boundary-layer mass, water, and heat budgets in wintertime cold-air outbreaks from the Arctic sea ice. Mon Weather Rev 125:1824–1837

    Article  Google Scholar 

  • Brümmer B (1999) Roll and cell convection in wintertime Arctic cold-air outbreaks. J Atmos Sci 56:2613–2636

    Article  Google Scholar 

  • Brümmer B, Höber H (1999) A mesoscale cyclone over the Fram Strait and its effect on sea ice. J Geophys Res 104(D16):19085–19098

    Article  Google Scholar 

  • Brümmer B, Thiemann S (2002) The atmospheric boundary layer in an Arctic wintertime on-ice air flow. Boundary Layer Meteorol 104:53–72

    Article  Google Scholar 

  • Brümmer B, Rump B, Kruspe G (1992) A cold air outbreak near Spitsbergen in springtime - boundary-layer modification and cloud development. Boundary Layer Meteorol 61:13–46

    Article  Google Scholar 

  • Brümmer B, Busack B, Hoeber H (1994) Boundary-layer observations over water and Arctic sea ice during on-ice air flow. Boundary Layer Meteorol 68:75–108

    Article  Google Scholar 

  • Cheng B, Vihma T (2002) Modelling of sea ice thermodynamics during warm-air advection. J Glaciol 48:425–438

    Article  Google Scholar 

  • Chlond A (1992) Three-dimensional simulation of cloud street development during a cold air outbreak. Boundary Layer Meteorol 58:161–200

    Article  Google Scholar 

  • Chrobok G, Raasch S, Etling D (1992) A comparison of local and nonlocal turbulence closure methods for the case of a cold air outbreak. Boundary Layer Meteorol 58:69–90

    Article  Google Scholar 

  • Claussen M (1991) Local advection processes in the surface layer of the marginal ice zone. Boundary Layer Meteorol 54:1–27

    Article  Google Scholar 

  • Dare RA, Atkinson BW (1999) Numerical modelling of atmospheric response to polynyas in the Southern Ocean sea ice zone. J Geophys Res 104(D14):16691–16708

    Article  Google Scholar 

  • Dare RA, Atkinson BW (2000) Atmospheric response to spatial variations in concentration and size of polynyas in the Southern Ocean sea-ice zone. Boundary Layer Meteorol 94:65–88

    Article  Google Scholar 

  • Dierer S, Schlünzen KH (2005) Influence parameters for a polar mesocyclone development. Meteorol Z 14:781–792

    Article  Google Scholar 

  • Dierer S, Schlünzen KH, Birnbaum G, Brümmer B, Müller G (2005) Atmosphere-sea ice interactions during a cyclone passage investigated by using model simulations and measurements. Mon Weather Rev 133(12):3678–3692

    Article  Google Scholar 

  • Doms G, Schättler U (2002) A description of the nonhydrostatic regional model LM. Part I: dynamics and numerics. http://www.cosmo-model.org/content/model/documentation/core/. Accessed 10 Mar 2010

  • Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary Layer Meteorol 65:215–248

    Article  Google Scholar 

  • Fairall CW, Markson R (1987) Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 marginal ice zone experiment. J Geophys Res 92:6921–6932

    Article  Google Scholar 

  • Gallee H (1997) Air-sea interactions over Terra Nova Bay during winter: simulation with a coupled atmosphere-polynya model. J Geophys Res 102:13835–13849

    Article  Google Scholar 

  • Garbrecht T, Lüpkes C, Wamser C, Augstein E (1999) Influence of a sea ice ridge on low-level air flow. J Geophys Res 104(D20):24499–24507

    Article  Google Scholar 

  • Garbrecht T, Lüpkes C, Hartmann J, Wolff M (2002) Atmospheric drag coefficients over sea ice – validation of a parameterization concept. Tellus 54A:205–219

    Google Scholar 

  • Glendening JW (1994) Dependence of boundary layer structure near an ice-edge coastal front upon geostrophic wind direction. J Geophys Res 99:5569–5581

    Article  Google Scholar 

  • Glendening JW, Burk SD (1992) Turbulent transport from an Arctic lead: a large eddy simulation. Boundary Layer Meteorol 59:315–339

    Article  Google Scholar 

  • Gryschka M, Raasch S (2005) Roll convection during a cold air outbreak: a large eddy simulation with stationary model domain. Geophys Res Lett 32:L14805. doi:10.1029/2005GL022872

    Article  Google Scholar 

  • Guest PS, Davidson KL (1987) The effect of observed ice conditions on the drag coefficient in the summer East Greenland marginal sea ice zone. J Geophys Res 92(C7):6943–6954

    Article  Google Scholar 

  • Guest PS, Glendening JW, Davidson KL (1995) An observational and numerical study of wind stress variations within marginal ice zones. J Geophys Res 100:10887–10904

    Article  Google Scholar 

  • Hartmann J, Kottmeier C, Wamser C (1992) Radiation and Eddy Flux Experiment (REFLEX I). Reports on Polar Research, vol 105. Alfred Wegener Institute, Bremerhaven

    Google Scholar 

  • Hartmann J, Kottmeier C, Raasch S (1997) Roll vortices and boundary layer development during a cold air outbreak. Boundary Layer Meteorol 84:45–46

    Article  Google Scholar 

  • Hartmann J, Albers F, Argentini S et al (1999) Arctic Radiation and Turbulence Interaction Study (ARTIST). Reports on Polar Research, vol 305. Alfred Wegener Institute, Bremerhaven

    Google Scholar 

  • Hehl O (1997) Die Bestimmung der hydrodynamischen Rauhigkeit der Unterseite polaren Meereises - Numerische Simulationen. Berichte des Institutes für Meteorologie und Klimatologie der Universität Hannover, vol 52. University of Hannover, Hannover

    Google Scholar 

  • Heinemann G (1999) The KABEG’97 field experiment: an aircraft-based study of the katabatic wind dynamics over the Greenlandic ice sheet. Boundary Layer Meteorol 93:75–116

    Article  Google Scholar 

  • Heinemann G (2002) Aircraft-based measurements of turbulence structures in the katabatic flow over Greenland. Boundary Layer Meteorol 103:49–81

    Article  Google Scholar 

  • Heinemann G (2003) Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. Glob Atmosphere-Ocean Sys 9:169–201

    Article  Google Scholar 

  • Heinemann G, Klein T (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus 54A:542–554

    Google Scholar 

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846

    Article  Google Scholar 

  • Inoue J, Kosovic B, Curry JA (2005) Evolution of a storm-driven cloudy boundary-layer in the Arctic. Boundary Layer Meteorol 117:213–230

    Article  Google Scholar 

  • Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE (2002) An annual cycle of Arctic surface cloud forcing at SHEBA. J Geophys Res. doi:10.1029/2000JC000439

  • Kaleschke L, Lüpkes C, Vihma T, Haarpaintner J, Bochert A, Hartmann J, Heygster G (2001) SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Can J Remote Sens 27(5):526–537

    Google Scholar 

  • Kantha LH, Mellor GL (1989) A numerical model of the atmospheric boundary layer over a marginal ice zone. J Geophys Res 94:4959–4970

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Metrol Monogr 32:1–84

    Google Scholar 

  • Klein T, Heinemann G (2002) Interaction of katabatic winds and mesocyclones at the eastern coast of Greenland. Meteorol Appl 9:407–422

    Article  Google Scholar 

  • Klein T, Heinemann G, Bromwich DH, Cassano JJ, Hines KM (2001a) Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data. Meteorol Atmos Phys 78:115–132

    Article  Google Scholar 

  • Klein T, Heinemann G, Gross P (2001b) Simulation of the katabatic flow near the Greenland ice margin using a high-resolution nonhydrostatic model. Meteorol Z (NF) 10:331–339

    Article  Google Scholar 

  • Kottmeier C, Hartmann J, Wamser C, Bochert A, Lüpkes C, Freese D, Cohrs W (1994) Radiation and Eddy Flux Experiment 1993 (REFLEX II), Reports on polar research, vol 133. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

    Google Scholar 

  • Kreyscher M, Harder M, Lemke P, Flato GM (2000) Results of the sea ice model intercomparison project: evaluation of sea-ice rheology schemes for use in climate simulations. J Geophys Res 105:11299–11320

    Article  Google Scholar 

  • Lemke P, Owens WB, Hibler WD III (1990) A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea. J Geophys Res 95:9513–9525

    Article  Google Scholar 

  • Liu AQ, Moore GWK, Tsuboki K, Renfrew IA (2004) A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys Res Lett 31:L03101. doi:10.1029/2003GL018530

    Article  Google Scholar 

  • Lüpkes C, Birnbaum G (2005) Surface drag in the arctic marginal sea ice zone – a comparison of different parameterisation concepts. Boundary Layer Meteorol 117:179–211

    Article  Google Scholar 

  • Lüpkes C, Gryanik VM (2005) The effect of sea ice on regional atmospheric processes in the Arctic, in Final report ACSYS, coordinated by A. Hense, Grant 03 PL034, Universität Bonn, Bonn, pp 11–21

    Google Scholar 

  • Lüpkes C, Schlünzen KH (1996) Modelling the arctic convective boundary-layer with different turbulence parameterisation. Boundary Layer Meteorol 79:107–130

    Article  Google Scholar 

  • Lüpkes C, Hartmann J, Birnbaum G et al. (2004) Convection over Arctic leads (COAL). In: Schauer U, Kattner G. (ed) The expedition ARKTIS XIX a,b and XIX/2 of the Research Vessel ‘Polarstern’ in 2003. Reports on Polar Research, vol 481. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 47–62

    Google Scholar 

  • Lüpkes C, Gryanik VM, Witha B, Gryschka M, Raasch S, Gollnik T (2008) Modelling convection over leads with LES and a non-eddy-resolving microscale model. J Geophys Res C09028. doi:10.1029/2007JC004099

  • Lynch AH, Chapman WL, Walsh JE, Weller G (1995) Development of a regional climate model of the western Arctic. J Clim 8:1555–1570

    Article  Google Scholar 

  • Mai S (1995) Beziehungen zwischen geometrischer und aerodynamischer Oberflächenrauhigkeit arktischer Meereisflächen. M.S. thesis, University of Bremen

    Google Scholar 

  • Mai S, Wamser C, Kottmeier C (1996) Geometric and aerodynamic roughness of sea ice. Boundary Layer Meteorol 77:233–248

    Article  Google Scholar 

  • Makshtas AP (1991) The heat budget of Arctic ice in the winter. International Glaciological Society, Cambridge

    Google Scholar 

  • Mauritsen T, Svensson G, Grisogono B (2005) Wave flow simulations over arctic leads. Boundary Layer Meteorol 117:259–273

    Article  Google Scholar 

  • McPhee MG (1979) The effect of the oceanic boundary layer on the mean drift of pack ice: application of a simple model. J Phys Oceanogr 9:388–400

    Article  Google Scholar 

  • Müller G, Brümmer B, Alpers W (1999) Roll convection within an Arctic cold-air outbreak: interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon Weather Rev 127(3):363–380

    Article  Google Scholar 

  • Olsson PQ, Harrington JY (2000) Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone. J Geophys Res 105(D9):11889–11899

    Article  Google Scholar 

  • Overland JE (1985) Atmospheric boundary layer structure and drag coefficients over sea ice. J Geophys Res 90:9029–9049

    Article  Google Scholar 

  • Overland JE, Guest PS (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96:4651–4662

    Article  Google Scholar 

  • Pagowski M, Moore GWK (2001) A numerical study of an extreme cold-air outbreak over the Labrador sea: sea ice, air-sea interaction, and development of polar lows. Mon Weather Rev 129(2):47–72

    Article  Google Scholar 

  • Paulson CA, Smith JD (1974) The AIDJEX lead experiment. AIDJEX Bull 23:1–8

    Google Scholar 

  • Perrie W, Hu Y (1997) Air-ice-ocean momentum exchange. Part II: ice drift. J Phys Oceanogr 27:1976–1996

    Article  Google Scholar 

  • Persson POG, Ruffieux D, Fairall CW (1997) Recalculations of pack ice and lead surface energy budgets during the Arctic leads experiment (LEADEX) 1992. J Geophys Res 102:25085–25089

    Article  Google Scholar 

  • Persson POG, Fairall C, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107:8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Pinto JO (1998) Autumnal mixed-phase cloudy boundary layers in the Arctic. J Atmos Sci 55:2016–2038

    Article  Google Scholar 

  • Pinto JO, Alam A, Maslanik JA, Curry JA, Stone RS (2003) Surface characteristics and atmospheric footprint of springtime Arctic leads at SHEBA. J Geophys Res 108:8051. doi:10.1029/2000JC000473

    Article  Google Scholar 

  • Raasch S (1990) Numerical simulation of the development of the convective boundary layer during a cold air outbreak, Boundary Layer Meteorol 52:349–375

    Google Scholar 

  • Raasch S, Schröter M (2001) PALM – a large eddy simulation model performing on massively parallel computers. Z Meteorol 10:363–372

    Article  Google Scholar 

  • Rasmussen L (1989) Den dag, Angmagssalik naesten blaeste i havet. Vejret, 2, Danish Meteorological Society, pp 3–14

    Google Scholar 

  • Ruffieux D, Persson POG, Fairall CW, Wolfe DE (1995) Ice pack and lead surface energy budgets during LEADEX 1992. J Geophys Res 100:4593–4612

    Article  Google Scholar 

  • Savijärvi H, Matthews S (2004) Flow over small heat islands: a numerical sensitivity study. J Atmos Sci 61:859–868

    Article  Google Scholar 

  • Schauer U, Kattner G (2004) The expedition ARKTIS XIX a,b and XIX/2 of the Research Vessel ‘Polarstern’ in 2003. Reports on Polar Research, vol 481. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

    Google Scholar 

  • Schlünzen KH (1990) Numerical studies on the in-land penetration of sea breeze fronts at a coastline with tidally flooded mudflats. Beitr Phys Atmos 63:243–256

    Google Scholar 

  • Schlünzen KH, Katzfey JJ (2003) Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus 55A:232–246

    Google Scholar 

  • Schlünzen KH, Bigalke, K, Lüpkes, C, Niemeier U, v. Salzen K (1996) Concept and realization of the mesoscale transport and fluid model ‚METRAS’. Technical Report 5, METRAS, Meteorologisches Institut, Universität Hamburg

    Google Scholar 

  • Schnell RC, Barry RG, Miles MW, Andreas EL, Radke LF, Brock CA, McCormick MP, Moore JL (1989) Lidar detection of leads in Arctic sea ice. Nature 339:530–532

    Article  Google Scholar 

  • Serreze MC, Maslanik JA, Rehder MC, Schnell RC, Kahl JD, Andreas EL (1992a) Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover. J Geophys Res 97:9411–9422

    Article  Google Scholar 

  • Serreze MC, Kahl JD, Schnell RC (1992b) Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J Clim 5:615–629

    Article  Google Scholar 

  • Smith SD, Anderson RJ, den Hartog G, Topham DR, Perkin RG (1983) An investigation of a polynya in the Canadian Archipelago 2, structure of turbulence and sensible heat flux. J Geophys Res 88:2900–2910

    Article  Google Scholar 

  • Steele M, Morison JH, Untersteiner N (1989) The partition of air-ice-ocean momentum exchange as a function of ice concentration, floe size, and draft. J Geophys Res 94:12739–12750

    Article  Google Scholar 

  • Tjernström M, Zagar M, Svensson G, Cassano JJ, Pfeifer S, Rinke A, Wyser K, Dethloff K, Jones C, Semmler T, Shaw M (2005) Modelling of the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary Layer Meteorol 117:337–381

    Article  Google Scholar 

  • Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary-layer: sensitivity to surface evaporation. Boundary Layer Meteorol 37:129–148

    Article  Google Scholar 

  • Vihma T (1995) Subgrid parameterization of surface heat and momentum fluxes over polar oceans. J Geophys Res 100:22625–22646

    Article  Google Scholar 

  • Vihma T, Brümmer B (2002) Observations and modelling of on-ice and off-ice air flows over the northern Baltic Sea. Boundary Layer Meteorol 103:1–27

    Article  Google Scholar 

  • Vihma T, Pirazzini R (2005) On the factors controlling the snow surface and 2-m air temperatures over the Arctic sea ice in winter. Boundary Layer Meteorol 117:73–90

    Article  Google Scholar 

  • Vihma T, Hartmann J, Lüpkes C (2003) A case study of an on-ice air flow over the Arctic marginal sea ice zone. Boundary Layer Meteorol 107:189–217

    Article  Google Scholar 

  • Vihma T, Lüpkes C, Hartmann J, Savijärvi H (2005) Observations and modelling of cold-air advection over Arctic sea ice. Boundary Layer Meteorol 117(2):275–300

    Article  Google Scholar 

  • von Salzen K, Claussen M, Schlünzen KH (1996) Application of the concept of blending height to the calculation of surface fluxes in a mesoscale model. Meteorol Z 5(2):60–66

    Google Scholar 

  • Wacker U, Potty KVJ, Lüpkes C, Hartmann J, Raschendorfer M (2005) A case study on a polar cold air outbreak over Fram Strait using a mesoscale weather prediction model. Boundary Layer Meteorol 117(2):301–336

    Article  Google Scholar 

  • Wang S, Wang Q, Jordan RE, Persson POG (2001) Interactions among longwave radiation of clouds, turbulence, and snow surface temperature in the Arctic: a model sensitivity study. J Geophys Res 106:15323–15333

    Article  Google Scholar 

  • Wefelmeier C (1992) Numerische Simulation mesoskaliger, dynamischer Wechselwirkungen zwischen Atmosphäre, Eis und Ozean, vol 42. Berichte des Instituts für Meteorologie und Klimatologie der Universität Hannover

    Google Scholar 

  • Wefelmeier C, Etling D (1991) The influence of sea ice distribution on the atmospheric boundary layer. Z Meteorol 41(5):333–342

    Google Scholar 

  • Weinbrecht S, Raasch S (2001) High-resolution simulations of the turbulent flow in the vicinity of an Arctic lead. J Geophys Res 106(C11):27035–27046

    Article  Google Scholar 

  • Zulauf MA, Krueger SK (2003) Two-dimensional cloud-resolving modelling of the atmospheric effects of Arctic leads based upon midwinter conditions at the surface heat budget of the Arctic ocean ice camp. J Geophys Res 108(D10):4312. doi:10.1029/2002JD002643

    Article  Google Scholar 

Download references

Acknowledgements

Part of the presented research was conducted in the frame of the German ACSYS joint programme funded by the Federal Ministry of Education and Research (FKZ 03PL034A and FKZ 03PL034C). Other parts were funded by the Deutsche Forschungsgemeinschaft under grants He 2740/1 and WA 1334/2–1 and within SFB512. The project ARTIST was funded by the EU (grant no. ENV4-CT97–0487). Finalisation of this work was supported by the EC 6th Framework Programme DAMOCLES. The model simulations were performed on the DKRZ computers within the University of Hamburg contingent. KABEG was an experiment of the Meteorologisches Institut der Universität Bonn (MIUB) in cooperation with the Alfred-Wegener-Institut (AWI). The ECMWF provided the analyses taken as initial and boundary conditions for simulations presented in Sects. 7.3 and 7.6. SSM/I data used for the derivation of the sea ice coverage for KABEG and ARTIST were provided by the Global Hydrology Resource Center (GHRC) at the Global Hydrology and Climate Center (Huntsville, Alabama, USA).

The numerical models were provided by the Institut für Geophysik und Meteorologie, Universität zu Köln, the Norwegian Meteorological Institute (DNMI, Oslo), the German Meteorological Service (DWD, Offenbach) and the University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Lüpkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lüpkes, C. et al. (2012). Mesoscale Modelling of the Arctic Atmospheric Boundary Layer and Its Interaction with Sea Ice. In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_7

Download citation

Publish with us

Policies and ethics