Skip to main content

Environmental Risks of Mining Metalliferous Muds in the Atlantis II Deep, Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

After two companies were awarded a 30-year license for the exploration and exploitation of metalliferous sediments in the Atlantis II Deep (Red Sea) in 2011, we herewith present conclusions and recommendations derived from an environmental risk assessment, the Metalliferous Sediment Atlantis II Deep (MESEDA) study, conducted in the period 1977–1981. For economic reasons, this program was discontinued before final report delivery and fell dormant for 30 years. The effects of environmental disturbances of the benthic and the near-bottom water layer habitats in and around the mining site deserve further and more modern risk assessments. We examine the relevance of our 1981 recommendations and of subsequent publications to the extended period of resource extraction planned for this century and recommend more up-to-date risk assessment investigations and evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Gideiri YB (1984) Impacts of mining on the central Red Sea environment. Deep-Sea Res 31A:823–828

    Article  Google Scholar 

  • Al-Barakati AMA, James AE, Karakas GM (2002) A three-dimensional hydrodynamic model to predict the distribution of temperature, salinity and water circulation of the Red Sea. J Mar Sci, King Abdulaziz Univ, 13: 3–17

    Google Scholar 

  • Amann H (1989) The Red Sea pilot project—lessons for future ocean mining. Mar Min 8(1):1–22

    Google Scholar 

  • Anschutz P, Blanc G, Monin C, Boulegue J (2000) Geochemical dynamics of the Atlantis II Deep (Red Sea.): II. Composition of metalliferous sediment pore waters. Geochim Cosmochim Acta 64(23):3995–4006

    Article  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008) A new lineage of halophilic, wall-less contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3(4):416–433

    Article  Google Scholar 

  • Bäcker H, Richter H (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis II Tief im Roten Meer. Geol Rundschau 62(3):697–741

    Google Scholar 

  • Beckmann W (1984) Mesozooplankton distribution on a transect from the Gulf of Aden to the Central Red Sea during the winter monsoon. Oceanol Acta 7:87–102

    Google Scholar 

  • Beckmann W (1995) Der Einfluss der großräumigen Wasseraustauschvorgänge auf den Zooplanktonbestand des Meeres und sein trophisches Gefüge. Dissertation thesis, University of Hamburg, 167 pp

    Google Scholar 

  • Bertram C, Krätschell A, O’Brien K, Brückmann W, Proelss A, Rehdanz K (2011) Metalliferous sediments in the Atlantis II Deep. Assessing the geological and economic resource potential and legal constraints. Kiel Working Paper No. 1688, Mar 2011 (Kiel Institute for the World Economy), 30 pp

    Google Scholar 

  • Blissenbach E, Nawab Z (1982) Metalliferous sediments of the seabed: The Atlantis II Deep deposits of the Red Sea. In: Mann-Borgese E, Ginsburg N (eds) Ocean Yearbook 3, nonliving resources. University of Chicago Press, Chicago, pp 77–104

    Google Scholar 

  • Block M, Part P (1986) Increased availability of cadmium to perfused rainbow trout (Salmo gairdneri, Rich.) gills in the presence of complexing agents diethyldithiocarbanate, ethyl xanthate, and isopropyl xanthate. Aquat Toxicol 8:472–476

    Article  Google Scholar 

  • Block M, Wicklund Glynn A (1992) Influence of xanthates on the uptake of 109Cd by Eurasian dace (Phoxinus phoxinus) and rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 11:873–879

    Article  Google Scholar 

  • Böttger-Schnack R, Lenz J, Weikert H (2004) Are taxonomic details of relevance to ecologists? An example from oncaeid microcopepods of the Red Sea. Mar Biol 144:1127–1140

    Article  Google Scholar 

  • Cember RP (1988) On the sources, formation and circulation of Red Sea deep water. J Geophys Res 93(C7):8175–8191

    Article  Google Scholar 

  • Diamond Fields International Ltd (2011) Atlantis II Red Sea deeps—the world’s first deep sea metal mining license. www.diamondfields.com/s/AtlantisII.asp. Accessed Jan 2014

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Procaryotic phylogenetic diversity and geochemical data of the brine—seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4(11):758–763

    Article  Google Scholar 

  • Egorov L, Elosta H, Kudla NL, Shan S, Yang KK (2012) Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep. The LRET Collegium 2012 Series 4, XVI + 168 pp. www.southampton.ac.uk/engineering/research/groups/fsi/lrf/lrf_collegium_2012_book_series.page. Accessed Jan 2014

  • Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipessinus arabici, a novel genus and species of eubacteria occurring in the Atlantis II deep brines of the Red Sea. Arch Microbiol 154(2):120–126

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II and Discovery Deep. Mar Geol 144: 311–330 and correction 331–332

    Google Scholar 

  • Hoagland P, Beaulieu S, Tivey MA, Eggert RG, German C, Glowka L, Lin J (2010) Deep-sea mining of seafloor massive sulfides. Mar Policy 34:728–732

    Article  Google Scholar 

  • International Seabed Authority (2013) International Seabed Authority reaches milestone with the approval of the first exploration plans and institution of overhead charges for administration of contracts. Nineteenth Session (SB/19/18), Kingston, Jamaica, 15–26 July 2013, 11 pp

    Google Scholar 

  • Jancke K (1981) Computer simulation of a gravity flow. In: Karbe et al. (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS Report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 276–280

    Google Scholar 

  • Karbe L (1980) Plankton investigations in an exposed reef of the central Red Sea (Shaab Baraja, Sudan). In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, 9–14 Jan 1980, vol 2, Khartoum. International Printing House, Khartoum, pp 519–540

    Google Scholar 

  • Karbe L (1987) Hot brines and the deep sea environment. In: Edwards AJ, Head SM (eds) Key Environment, Red Sea. Pergamon Press, Oxford, pp 70–89

    Google Scholar 

  • Karbe L, Nasr D (1981) Chemical and toxicological characteristics of the tailings material. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 245–253

    Google Scholar 

  • Karbe L, Thiel H, Weikert H, Mill AJB (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah 352 pp. www.senckenberg.de/MESEDA

  • Klevjer TA, Torres DJ, Kaartvedt S (2012) Distribution and diel vertical movement of mesopelagic scattering layers in the Red Sea. Mar Biol 159:1833–1841

    Article  Google Scholar 

  • Lange J (1981) Tailings disposal. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 238–244

    Google Scholar 

  • Lange J, Bäcker H, Post J, Weber H (1980) Plans and tests for a metal concentration and tailing disposal at sea. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, 9–14 Jan 1980, vol 3. International Printing House, Khartoum, pp 65–126

    Google Scholar 

  • Lange J, Post J, Bäcker H, Karbe L, Thiel H, Weikert H (1983) Abbau von Erzschlämmen des Atlantis II-Tiefs, Rotes Meer: Charakterisierung der aktuellen Umweltbedingungen und Bewertung der Auswirkungen auf das Ökosystem. Forschungsvorhaben MESEDA (Metalliferous Sediments Atlantis II-Deep) R 301 / R 309, Abschlussbericht an das Bundesministerium für Forschung und Technologie, 120 pp

    Google Scholar 

  • Laurila TE, Hannigton MD, Petersen S, Garbe-Schönberg D (2014) Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: evidence from rare earth element geochemistry. Geochim Cosmochim Acta 126:146–168

    Article  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: Life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  Google Scholar 

  • Meeking S, Warner MJ (1999) Ventilation of Red Sea waters with respect to chlorofluorocarbons. J Geophys Res 104(C5):11087–11097

    Article  Google Scholar 

  • Mill AJB (1980) Deep ocean mining in the Red Sea. Theory and practice of tailings disposal. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, 9–14 Jan 1980, vol 3. International Printing House, Khartoum, pp 33–63

    Google Scholar 

  • Mill AJB (1981) Computer simulation of discharge from production scale plant. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS Report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 264–275

    Google Scholar 

  • Mill AJB, Jancke K (1981) Comparison of model and mining test results. In Karbe et al. (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep. Red Sea pre-mining environmental conditions and evaluation of the risk to the environment. EIS Report to the Saudi-Sudanese Joint Commission, Jeddah, pp 276–280

    Google Scholar 

  • Mustafa Z, Amann M (1978) Ocean mining and protection of the marine environment of the Red Sea. In: Ocean Technology Conference, OTC 3188:1199–1266

    Google Scholar 

  • Mustafa Z, Amann H (1980) Red Sea pre-pilot mining test 1979. In: Ocean Technology Conference, OTC 3874:197–210

    Google Scholar 

  • Mustafa Z, Nawab Z, Horn R, LeLann F (1980) Role of physical oceanography and environmental studies in the Red Sea. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and tropical Western Indian Ocean, 9–14 Jan 1980, vol 3. International Printing House, Khartoum, pp 8–31

    Google Scholar 

  • Nawab Z (1980) Introductory speech. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, 9–14 Jan 1980, vol 3. International Printing House, Khartoum, pp 1–5

    Google Scholar 

  • Nawab ZA (1984) Red Sea mining: a new era. Deep-Sea Res 31A:813–822

    Article  Google Scholar 

  • Nawab Z (2001) Atlantis II Deep: a future deep-sea mining site. In: International Seabed Authority (ed) Proposed technologies for deep seabed mining of polymetallic nodules. Proceedings of the international seabed authority’s workshop held in Kingston, Jamaica, 3–6 Aug 1999, pp 295–310

    Google Scholar 

  • Nawab Z, Lück K (1979) Testförderung von metallhaltigen Schlämmen vom Boden des Roten Meeres. Meerestechnik 10(6):181–187

    Google Scholar 

  • Quadfasel D, Baudner H (1993) Gyre-scale circulation cells in the Red Sea. Oceanol Acta 16:211–229

    Google Scholar 

  • Schriever G, Thiel H (2013) Tailings and their disposal in deep-sea mining. In: Proceedings of the 10th (2013) ISOPE ocean mining and gas hydrates symposium. Szczecin, Poland, 22–26 Sept 2013, pp 5–17

    Google Scholar 

  • Swift SA, Bower AS, Schmitt RW (2012) Vertical, horizontal and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep Sea Res I 64:118–128

    Article  Google Scholar 

  • Theeg R (1985) Die Aktivität des Elektronen-Transport-Systems Benthischer Lebensgemeinschaften. Dissertation, Universität Hamburg, 195 pp

    Google Scholar 

  • Thiel H (1980) Community structure and biomass of the benthos in the central deep Red Sea. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, vol 3. International Printing House, Khartoum, 9–14 Jan 1980, pp 127–134

    Google Scholar 

  • Thiel H (1981) Effects on the benthos. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 313–325

    Google Scholar 

  • Thiel H (1983) Pteropod shells: another food source for deep sea organisms. Senckenb Marit 15:147–155

    Google Scholar 

  • Thiel H (1987) Benthos of the deep Red Sea. In: Edwards AJ, Head SM (eds) Key Environment, Red Sea. Pergamon Press, Oxford, pp 112–127

    Google Scholar 

  • Thiel H, Weikert H (1984) Biological oceanography of the Red Sea oceanic system. Deep Sea Res 31A:829–831

    Article  Google Scholar 

  • Thiel H, Weikert H, Karbe L (1986) Risk assessment for mining metalliferous muds in the deep Red Sea. Ambio 15:34–41

    Google Scholar 

  • Thiel H, Pfannkuche O, Theeg R, Schriever G (1987) Benthic metabolism and standing stock in the central and northern deep Red Sea. Publicationi della Stazione Zoologica di Napoli I: Mar Ecol 8:1–20

    Article  Google Scholar 

  • Thiel H, Foell EJ, Schriever G (1991) Potential environmental effects of deep seabed mining. Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit: Report 102 0 42 46. Berichte aus dem Zentrum für Klima und Meeresforschung der Universität Hamburg, 243 pp

    Google Scholar 

  • Tragon E, Garrett C (1997) The shallow thermocline circulation of the Red Sea. Deep-Sea Res 44:1355–1376

    Article  Google Scholar 

  • Trüper HG (1969) Bacterial sulfate reduction in the Red Sea hot brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 263–271

    Chapter  Google Scholar 

  • Van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomsen J, Tamburrini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of procariotic life in deep hypersaline anoxic basins. Science 307:121–123

    Google Scholar 

  • Wang Y, Yang J, Lee OO, Dash S, Lau SC, Al-Suwailem A, Wong TY, Danchin A, Quiam PY (2011) Hydrothermially generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. Int Soc Microb Ecol J 5:1652–1659

    Google Scholar 

  • Weber H, Ergunalp D (1981) Processing. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 235–237

    Google Scholar 

  • Weikert H (1980a) The oxygen minimum layer in the Red Sea: ecological implications on the occurrence of zooplankton in the area of the Atlantis II Deep. Meeresforschung 28:1–9

    Google Scholar 

  • Weikert H (1980b) On the plankton of the central Red Sea. A first synopsis of results obtained from cruises MESEDA I and MESEDA II. In: Abu Gideiri YB (ed) Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, 9–14 Jan 1980, vol 3. International Printing House, Khartoum, pp 135–167

    Google Scholar 

  • Weikert H (1981) Effects on the pelagic organisms. In: Karbe et al (eds) (1981/2011) Mining of metalliferous sediments from the Atlantis II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. EIS report to the Saudi-Sudanese Red Sea Joint Commission, Jeddah, pp 298–312

    Google Scholar 

  • Weikert H (1982) The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis-II-Deep, central Red Sea. Mar Ecol Prog Ser 8:129–143

    Article  Google Scholar 

  • Weikert H (1987) Plankton and the pelagic environment. In: Edwards AJ, Head SM (eds) Key Environment, Red Sea. Pergamon Press, Oxford, pp 90–111

    Google Scholar 

  • Weikert H, Koppelmann R (1993) Vertical structural patterns of deep-living zooplankton in the NE Atlantic, the Levantine Sea and the Red Sea. Oceanol Acta 16:163–177

    Google Scholar 

  • Weikert H, Koppelmann R (1996) Midwater zooplankton profiles from the temperate ocean and particularly landlocked seas. A re-evaluation of interoceanic differences. Oceanol Acta 19:657–664

    Google Scholar 

Download references

Acknowledgments

We wish to thank Eric J. Foell for streamlining our use of the English language in the manuscript. Louiesito Abalos has kindly adjusted the color images for better printing quality, as all figures were originally prepared more than 30 years ago. Drs. Gerd Schriever, Bettina Martin, and Bernd Christiansen were helpful in the preparation of the photographs. We are most grateful to Dr. Teresa Radziejewska (Poland) and Dr. Rahul Sharma (India) for their helpful reviews of our manuscript. The German contributions to the environmental MESEDA project were supported by the German Ministry of Research and Technology under Grant R 301/R 309 and by the University of Hamburg. We also gratefully acknowledge the positive cooperation with the Red Sea Commission, the Preussag company, particularly with Dr. Harald Bäcker, Chief Scientist of the Preussag team and with all our scientific, technical, and student team members. It has been great fun to work together with scientists from the Republic of the Sudan and the Kingdom of Saudi Arabia. The cooperative spirit of the many individuals from industry, administration, and science remains a positive model for industrial developments concerned about environmental protection, particularly in that no restrictions were placed on the publication of scientific results and our personal views on the potential impacts of mining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjalmar Thiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiel, H., Karbe, L., Weikert, H. (2015). Environmental Risks of Mining Metalliferous Muds in the Atlantis II Deep, Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_15

Download citation

Publish with us

Policies and ethics