Skip to main content

Getting Involved: Context-Based Learning in Chemistry Education

  • Chapter
  • First Online:
Affective Dimensions in Chemistry Education

Abstract

This chapter reviews influential theories of motivation and interest development to support the argument that emotional and affective aspects are crucial for attitudes toward and learning of chemistry in schools. Context-based learning approaches such as the German project Chemie im Kontext are reflected from the perspective of their ability to foster students’ interest and motivation. The “RIASEC framework” is presented as a structure to design context-based teaching modules that match students’ interests. Based on this framework, three examples of modules describe how different areas of interest can be explored in order to connect content knowledge to personal or societal questions. Empirical findings are discussed for one study investigating students’ attitudes as well as their application of content knowledge. The results showed that using personally relevant contexts had mostly positive effects on students’ motivation and interest; however, there were less satisfying results regarding students’ application of content knowledge. This study suggests that, in some cases, an emotional identification with a topic might restrain the application of science concepts, e.g., in decision making. Recommendations for further research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.

    Google Scholar 

  • Alexander, P. A., Kulikowich, J. M., & Schulze, S. K. (1994). How subject-matter knowledge affects recall and interest on the comprehension of scientific exposition. American Educational Research Journal, 31, 313–337.

    Article  Google Scholar 

  • Alsop, S., & Watts, M. (2003). Science education and affect. International Journal of Science Education, 25, 1043–1047.

    Article  Google Scholar 

  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91, 347–370.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623–654.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. The experience of play in work and games. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press.

    Book  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self determination of behavior. Psychological Inquiry, 11, 227–268.

    Article  Google Scholar 

  • Demuth, R., Gräsel, C., Parchmann, I., & Ralle, B. (Eds.). (2008). Chemie im Kontext—Von der Innovation zur nachhaltigen Verbreitung eines Unterrichtskonzepts. [Chemie im Kontext – From an innovation to a sustainable distribution of a conceptual approach] Münster. New York, München, Berlin: Waxmann.

    Google Scholar 

  • Demuth, R., Parchmann, I., & Ralle, B. (Eds.). (2006). Chemie im Kontext—Kontexte, Medien, Basiskonzepte—Sekundarstufe II. [Chemie im Kontext—Contexts, media and basic concepts for upper secondary level.]. Berlin: Cornelsen Verlag.

    Google Scholar 

  • Dickhauser, O., & Meyer, W. (2006). Gender differences in young children’s math ability attributions. Psychology Science, 48(1), 3.

    Google Scholar 

  • Dierks, P. O., Höffler, T. N., & Parchmann, I. (2014). Profiling interest in science. Learning in school and beyond. Journal of Research in Science & Technological Education, 32(2), 97–114.

    Article  Google Scholar 

  • Donnelly, J. (2001). Contested terrain or unified project? ‘The nature of science’ in the National Curriculum for England and Wales. International Journal of Science Education, 23, 181–195.

    Article  Google Scholar 

  • Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132.

    Article  Google Scholar 

  • Fechner, S., van Vorst, H., Kölbach, E., & Sumfleth, E. (2015). Affective involvement in context-oriented learning tasks. In M. Kahveci & M. Orgill (Eds.), Affective Dimensions in Chemistry Education. Heidelberg: Springer.

    Google Scholar 

  • Gilbert, J. K. (2006). On the nature of “Context” in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(6), 817–837.

    Article  Google Scholar 

  • Haeussler, P., Hoffman, L., Langeheine, R., Rost, J., & Sievers, K. (1998). A typology of students’ interest in physics and the distribution of gender and age within each type. International Journal of Science Education, 20(2), 223–238.

    Article  Google Scholar 

  • Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgement. Psychological Review, 108, 814–834.

    Article  CAS  Google Scholar 

  • Hannover, B., & Kessels, U. (2004). Self-to-self prototype matching as a strategy for making academic choices. Why high school students do not like math and science. Learning and Instruction, 14(1), 51–67.

    Article  Google Scholar 

  • Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot, A. J. (2000). Short-term and long-term consequences of achievement: Predicting continued interest and performance over time. Journal of Educational Psychology, 92, 316–330.

    Article  Google Scholar 

  • Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978–1003.

    Google Scholar 

  • Hidi, S., & Baird, W. (1986). Interestingness—A neglected variable in discourse processing. Cognitive Science, 10, 179–194.

    Google Scholar 

  • Hidi, S., & Renninger, A. (2006). The four-phase model of interest development. Educational Psychologist, 41, 111–127.

    Article  Google Scholar 

  • Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Edessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Holstermann, N., & Bögeholz, S. (2007). Interesse von Jungen und Mädchen an naturwissenschaftlichen Themen am Ende der Sekundarstufe I [Gender-specific interests of adolescent learners in science topics], ZfDN 13/2007.

    Google Scholar 

  • Jenkins, E. W., & Nelson, N. W. (2005). Important, but not for me: students’ attitudes towards secondary school science in England. Research in Science & Technology Education, 23, 41–57.

    Article  Google Scholar 

  • Kahneman, D. (2012). Thinking, fast and slow. New York & London: Penguin Psychology.

    Google Scholar 

  • King, D. (2009). Context-based chemistry: Creating opportunities for fluid transitions between concepts and context. Teaching science, 55(4), 13–20.

    Google Scholar 

  • KMK—Konferenz der Kultusminister der Länder der Bundesrepublik Deutschland (2004). Bildungsstandards im Fach Chemie für den mittleren Schulabschluss [Standards for lower secondary chemistry education], München.

    Google Scholar 

  • Kolstø, S. D., & Ratcliffe, M. (2007). Social aspects of argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Recent developments and future directions. New York: Springer.

    Google Scholar 

  • Kortland, K. (2001). A problem posing approach to teaching decision making about the waste issue (PhD thesis, Cdb Press, Utrecht).

    Google Scholar 

  • Krapp, A. (2002). An educational–psychological theory of interest and its relation to self-determination theory. In E. Deci & R. Ryan (Eds.), The handbook of self-determination research (pp. 405–427). Rochester, NY: University of Rochester Press.

    Google Scholar 

  • Krapp, A., & Prenzel, M. (2011). Research on interest in Science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50.

    Article  Google Scholar 

  • Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a socio-critical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Environmental and Science Education, 4(2), 131–145.

    Google Scholar 

  • Mayring, P. (2000). Qualitative content analysis. FQS Forum: Qualitative Social Research), 1(2). Retrieved from http://www.qualitative-research.net/fqs.

  • Menthe, J. (2006). Urteilen im Chemieunterricht—eine empirische Untersuchung zum Einfluss des Chemieunterrichts auf das Urteilen von Lernenden in Alltagsfragen. [Decision making in chemistry lessons—an empirical study of the influence of science knowledge in daily life decisions.] (Ph.D. thesis CAU Kiel). Retrieved from http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_1681

  • Menthe, J. (2012). Wider besseres Wissen?! Conceptual change: Warum Lernen nicht notwendig zur Veränderung des Urteilens und Bewertens führt. [Why learning does not always lead to a change of decision making.]. Zeitschrift für interpretative Schul- und Unterrichtsforschung, Themenheft Urteilsbildung, 1, 161–183.

    Google Scholar 

  • Nentwig, P., Parchmann, I., Gräsel, C., Ralle, B., & Demuth, R. (2007). Chemie im Kontext—A new approach to teaching chemistry; Its principles and first evaluation data. Journal of Chemical Education, 84(9), 1439–1444.

    Article  CAS  Google Scholar 

  • Nentwig, P., & Waddington, D. (Eds.). (2005). Making it relevant: Context based learning of science. Münster: Waxmann.

    Google Scholar 

  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079.

    Article  Google Scholar 

  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). “Chemie im Kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.

    Article  Google Scholar 

  • Parchmann, I. and the CHiK team (2009). Chemie im Kontext—One approach to realize science standards in chemistry classes? [“Química en context”—Una proposta per assolir els objectius del currículum a les classes de química?]. In: Educació Química EduQ n. 2, 24–31, Reprint of the article (2009): Teaching chemistry through contexts. Chemistry in Action! 87, 10–16.

    Google Scholar 

  • Pintrich, P. R. (1999). Motivational beliefs as resources for and constraints on conceptual change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 33–50). Oxford: Elsevier Science.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167–199.

    Article  Google Scholar 

  • Prenzel, M. (1997). Sechs Möglichkeiten Lernende zu demotivieren. Wege zum Können [Six possibilities to motivate students. Ways to ability]. In H. Gruber & A. Renkl (Eds.), Determinanten des Kompetenzerwerbs (pp. 32–44). Bern, Switzerland: Huber.

    Google Scholar 

  • Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19, 167–182.

    Article  Google Scholar 

  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship. Maidenhead: OUP.

    Google Scholar 

  • Schiefele, U. (1999). Interest and learning from text. Scientific Studies of Reading, 3, 257–280.

    Article  Google Scholar 

  • Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Schraw, G., & Lehman, S. (2001). Situational interest: A review of the literature and directions for future research. Educational Psychology Review, 13, 23–52.

    Article  Google Scholar 

  • Schreiner, C., & Sjøberg, S. (2007). Science education and youth’s identity construction—Two incompatible projects? In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The re-emergence of values in the science curriculum (pp. 231–249). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychological Review, 8, 220–247.

    Article  Google Scholar 

  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3(2), 155–165.

    Article  Google Scholar 

  • Taconis, R., & Kessels, U. (2009). How choosing science depends on students’ individual fit to ‘science culture’. International Journal of Science Education, 31(8), 1115–1132.

    Article  Google Scholar 

  • Vedder-Weiss, D., & Fortus, D. (2012). Adolescents’ declining motivation to learn science: A follow-up study. Journal of Research in Science Teaching, 49(9), 1057–1095.

    Article  Google Scholar 

  • Wigfield, A., & Eccles, J. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. doi:10.1006/ceps.1999.1015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Menthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menthe, J., Parchmann, I. (2015). Getting Involved: Context-Based Learning in Chemistry Education. In: Kahveci, M., Orgill, M. (eds) Affective Dimensions in Chemistry Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45085-7_3

Download citation

Publish with us

Policies and ethics