Skip to main content

Microbial Diversity of Marine Sponges

  • Chapter
Sponges (Porifera)

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 37))

Abstract

The recent application of molecular microbial ecology tools to sponge-microbe associations has revealed a glimpse into the biodiversity of these microbial communities, that is considered just ‘the tip of the iceberg’. This chapter provides an overview over these new findings with regard to identity, diversity and distribution patterns of sponge-associated microbial consortia. The sponges Aplysina aerophoba (Verongida), Rhopaloeides odorabile (Dicytoceratida) and Theonella swinhoei (Lithistida) were chosen as model systems for this review because they have been subject to both, cultivation-dependent and cultivation-independent approaches. A discussion of the microbial assemblages of Halichondria panicea is presented in the accompanying chapter by Imhoff and Stöhr. Considering that a large fraction of sponge-associated microbes is not yet amenable to cultivation, an emphasis has been placed on the techniques centering around the 16S rRNA gene. A section has been included that covers the potential of sponge microbial communities for drug discovery. Finally, a ‘sponge-microbe interaction model’ is presented that summarizes our current understanding of the processes that might have shaped the community structure of the microbial assemblages within sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alksne LE, Projan SJ (2000) Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 11:625–36

    Article  PubMed  CAS  Google Scholar 

  • Althoff K, Schütt C, Steffen R, Batel R, Müller WEG (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol 130:529–536

    Article  Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Bakus GJ, Targett NM, Schulte B (1986) Chemical ecology of marine organisms: an overview. J Chem Ecol 12:951–987

    Article  CAS  Google Scholar 

  • Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167

    Article  PubMed  CAS  Google Scholar 

  • Beer S, Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131:613–617

    Article  Google Scholar 

  • Bergquist PR (1978) Sponges. University of California Press, Berkeley

    Google Scholar 

  • Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90

    Article  PubMed  CAS  Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722

    Article  PubMed  CAS  Google Scholar 

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed Engl 37:2162–2178

    Article  Google Scholar 

  • Böhm M, Schröder HC, Müller IM, Müller WE, Gamulin V (2000) The mitogen-activated protein kinase p38 pathway is conserved in metazoans: cloning and activation of p38 of the SAPK2 subfamily from the sponge Suberites domuncula. Biol Cell 92:95–104

    Article  PubMed  Google Scholar 

  • Borowitzka MA, Hinde R, Pironet F (1988) Carbon fixation by the sponge Dysidea herbacea and its endosymbiont Oscillatoria spongeliae. In Choat JH et al (eds) Proc 6th Int Coral Reef Symposium, Townsville, Australia, pp 151–155

    Google Scholar 

  • Brusca RC, Brusca GJ (1990) Phylum Porifera: the sponges. In: Sinauer AD (ed) Invertebrates. Sinauer Press, MA, pp 181–210

    Google Scholar 

  • Carney JR, Rinehart KL (1995) Biosynthesis of brominated tyrosine metabolites by Aplysina fistularis. J Nat Prod 58:971–985

    Article  PubMed  CAS  Google Scholar 

  • Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699

    Article  PubMed  CAS  Google Scholar 

  • Davy SK, Trautman DA, Borowitzka MA, Hinde R (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. J Exp Biol 205:3505–3511

    PubMed  CAS  Google Scholar 

  • Ebel R, Brenzinger M, Kunze A, Gross HJ, Proksch P (1997) Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462

    Article  CAS  Google Scholar 

  • Fenical W (1996) Marine biodiversity and the medicine cabinet. The status of new drugs from marine organisms. Oceanography 9:23–27

    Article  Google Scholar 

  • Friedrich AB (1998) Bakterien des Schwammes Aplysina cavernicola: Detektion, Charakterisierung und phylogenetische Einordnung. Masters Thesis. University of Würzburg, Germany

    Google Scholar 

  • Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridisation (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  • Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM (1998) Membrane-bounded nucleoids in microbial symbionts of marine sponges. FEMS Microbiol Lett 166:29–34

    Article  CAS  Google Scholar 

  • Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM (1999) Membrane-bounded nuclear bodies in a diverse range of microbial symbionts of Great Barrier Reef sponges. Mem Queensland Mus 44:193–203

    Google Scholar 

  • Gallissian MF, Vacelet J (1976) Ultrastructure des quelques stades de l’ovogenese de spongiaires du genre Verongia (Dictyoceratida). Ann Sci Nat Zool 18:381–404

    Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin a and b from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Rappe MS (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the ocean. Wiley, New York, pp 47–84

    Google Scholar 

  • Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed  Google Scholar 

  • Görtz HD, Brigger T (1998) Intracellular bacteria in protozoa. Naturwissenschaften 85:359–368

    Article  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    PubMed  CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  PubMed  CAS  Google Scholar 

  • Henne A, Schmitz RA, Bomeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hacker J (2001) Pathogenicity islands: the tip of the iceberg. Microbes Infect 3:545–548

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Hugenholtz P, Tyson GW, Blackall LL (2002) Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol179:29–42

    PubMed  CAS  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites from symbiotic marine microorganisms. Chem Rev 93:1753–1769

    Article  CAS  Google Scholar 

  • Kreuter MH, Leake RE, Rinaldi F, Müller-Klieser W, Maidhof A, Müller WEG, Schröder HC (1990). Inhibition of intrinsic protein tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. Comp Biochem Physiol B 97:151–158

    Article  PubMed  CAS  Google Scholar 

  • Levi C, Levi P (1976) Embryogenese de Chondrosia reniformis (Nardo), demosponge ovipare, et transmission des bacteries symbiotiques. Ann Sci Nat Zool 18:367–380

    Google Scholar 

  • Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143:739–748

    Article  CAS  Google Scholar 

  • Lopez JV, McCarthy, PJ, Janda, KE, Willoughby R, Pomponi SH (1999) Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera: Demospongiae). Memoirs Queensland Museum 44: 329–341. Brisbane

    Google Scholar 

  • Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173

    Article  PubMed  CAS  Google Scholar 

  • MacNeil IA, Tiong CL, Minor C, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A, Aldredge T, Long H, Gilman M, Holt D, Osburne MS (2000) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:1–8

    Google Scholar 

  • Müller W, Böhm M, Grebenjuk V, Skorokhod A, Müller I, Gamulin V (2002) Conservation of the positions of metazoan introns from sponges to humans. Gene 295:299

    Article  PubMed  Google Scholar 

  • Müller WEG (1998) Molecular phylogeny of eumetazoa: genes in sponges (Porifera) give evidence for the monophyly of animals. Progr Mol Subcell Biol 9:89–126

    Article  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Mol Microb Ecol 344:1–27

    Google Scholar 

  • Olson JB, Harmody DK, McCarthy PJ (2002) Alphaproteobacteria cultivated from marine sponges display branching rod morphology. FEMS Microbiol Lett 211:169–173

    PubMed  CAS  Google Scholar 

  • Ohta S, Uno M, Yoshimura M, Hiraga Y, Ikegami S (1996) Rhopaloic acid A: a novel norsesterterpene from a marine sponge, Rhopaloeides sp., which inhibits gastrulation of starfish embryos. Tetrahedron Lett 37:2265–2266

    Article  CAS  Google Scholar 

  • Pabel C, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol (in press)

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pile AJ (1997) Finding Reiswig’s missing carbon: quantification of sponge feeding using dual-beam flow cytometry. Proc 8th Int Coral Reef Symp 2:1403–1410

    CAS  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–624

    Article  PubMed  CAS  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas: current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  PubMed  CAS  Google Scholar 

  • Pryde SE, Richardson AJ, Stewart CS, Flint HJ (1999) Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microbiol 65:5372–5377

    PubMed  CAS  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  CAS  Google Scholar 

  • Reiswig H (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231–249

    Article  Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17:403–409

    Article  PubMed  CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  PubMed  CAS  Google Scholar 

  • Rützler K (1985) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 455–466

    Google Scholar 

  • Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762

    PubMed  CAS  Google Scholar 

  • Sauer C, Dudaczek D, Holldobler B, Gross R (2002) Tissue localization of the endosymbiotic bacterium ‘Candidatus Blochmannia floridanus’ in adults and larvae of the Carpenter ant Camponotus floridanus. Appl Environ Microbiol 68:4187–4193

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Eck J (2001) Umweltgenomik: Charakterisierung und Nutzung nicht-kultivierter Mikroorganismen. Biospektrum 6:494–451

    Google Scholar 

  • Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacterid 179:7803–7811

    CAS  Google Scholar 

  • Schleper C, DeLong EF, Preston CM, Feldman RA, Wu KY, Swanson RV (1998) Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J Bacterid 180:5003–5009

    CAS  Google Scholar 

  • Schumann-Kindel G, Bergbauer M, Manz W, Szewzyk U, Reitner J (1997) Aerobic and anaerobic microorganisms in modern sponges: a possible relationship to fossilization processes. Facies 36:268–272

    Google Scholar 

  • Schmidt EW, Obraztova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel Delta-Proteobacterium ‘Candidatus Entotheonella palauensis’. Mar Biol 136:969–977

    Article  CAS  Google Scholar 

  • Schmitz FJ (1994) Cytotoxic compounds from sponges and associated microfauna. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Proc 4th Int Porifera Congr Amsterdam, Balkema, Rotterdam

    Google Scholar 

  • Seow KT, Meurer G, Gerlitz M, Wendt-Pienkowski E, Hutchinson CR, Davies J (1997) A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol179:7360–7368

    PubMed  CAS  Google Scholar 

  • Sharma GM, Burkholder PR (1967) Studies on antimicrobial substances of sponges. I. Isolation, purification and properties of a new bromine-containing antimicrobial substance. J Antibiot Tokyo Ser A 20:200–203

    CAS  Google Scholar 

  • Steinert M, Hentschel U, Hacker J (2000) Symbiosis and pathogenesis: evolution of themicrobe-host interaction. Naturwissenschaften 87:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    Article  CAS  Google Scholar 

  • Teeyapant R, Woerdenbag HJ, Kreis P, Hacker J, Wray V, Witte L, Proksch P (1993) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch C 48:939–945

    PubMed  CAS  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Müller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for chemical defense. Aquat Microb Ecol 31:77–83

    Article  Google Scholar 

  • Thompson JE, Barrow KD, Faulkner JD (1983) Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (=Verongia thiona).Acta Zool (Stockh) 44:199–210

    Article  Google Scholar 

  • Thompson JE, Murphy PT, Bergquist PR, Evans EA (1987) Environmentally induced variation in diterpene composition of the marine sponge Rhopaloides odorabile. Biochem Syst Ecol 15:595–606

    Article  CAS  Google Scholar 

  • Thorns C, Horn M, Wagner M, Hentschel U, Proksch P (2003) Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 42:685–692

    Google Scholar 

  • Turon X, Galera J, Uriz MJ (1997) Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J Exp Zool 278:22–36

    Article  Google Scholar 

  • Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322

    Article  PubMed  CAS  Google Scholar 

  • Tymiak AA, Rinehart KL (1981) Biosynthesis of dibromotyrosine-derived antimicrobial compounds from the marine sponge Aplysina fistularis (=Verongia aurea). J Am Chem Soc 103:6763–6765

    Article  CAS  Google Scholar 

  • Usher KM, Kuo J, Fromont J, Sutton DC (2001) Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 461:15–23

    Article  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  • Vacelet J (1970) Description de cellules a bacteries intranucléaires chez des éponges Verongia. J Microsc 9:333–346

    Google Scholar 

  • Vacelet J (1971) Étude en microscopie électronique de l’association entre une cyanophycée chroococcale et une éponge du genre Verongia. J Microsc 12:363–380

    Google Scholar 

  • Vacelet J (1975) Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Ecol 30:301–314

    Article  Google Scholar 

  • Vacelet J, Boury-Esnault N, Fiala-Medioni A, Fisher CR (1995) A methanotrophic carnivorous sponge. Nature 377:296

    Article  CAS  Google Scholar 

  • Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069-2071

    Google Scholar 

  • Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Ecol 21:213–229

    Google Scholar 

  • Wagner-Dobler I, Beil W, Lang S, Meiners M, Laatsch H (2002) Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv Biochem Eng Biotechnol 74:207–238

    PubMed  CAS  Google Scholar 

  • Webb VL, Maas EW (2002) Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207:43–7

    Article  PubMed  CAS  Google Scholar 

  • Webster N, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001a) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  CAS  Google Scholar 

  • Webster NS, Webb RI, Ridd MJ, Hill RT, Negri AP (2001b) The effects of copper on the microbial community of a coral reef sponge. Environ Microbiol 31:19–31

    Article  Google Scholar 

  • Weiss B, Ebel R, Elbrächter M, Kirchner M, Proksch P (1996) Defense metabolites from the marine sponge Verongia aerophoba. Biochem Syst Ecol 24:1–12

    Article  CAS  Google Scholar 

  • Wehrl M (2001) Untersuchungen zur Interaktion des marinen Schwammes Aplysina aerophoba mit assoziierten Mikroorganismen. Masters Thesis, University of Würzburg, Germany

    Google Scholar 

  • Weiss B, Ebel R, Elbrächter M, Kirchner M, Proksch P (1996) Defense metabolites from the marine sponge Verongia aerophoba. Biochem Syst Ecol 24:1–12

    Article  CAS  Google Scholar 

  • Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology and microbialpopulations of coral reef sponges. Mar Biol 49:161–167

    Article  Google Scholar 

  • Wilkinson CR (1978b) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176.

    Article  Google Scholar 

  • Wilkinson CR (1978c) Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol 49:177–185

    Article  Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 112–151

    Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Google Scholar 

  • Wilkinson CR, Garrone R (1980) Nutrition in marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC, Tiffon Y (ed) Nutrition in the lower Metazoa. Pergamon Press, Oxford, pp 157–161

    Google Scholar 

  • Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

  • Wilkinson CR, Garrone G, Vacelet J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc Lond B 220:519–528

    Article  Google Scholar 

  • Willenz P, Hartman WD (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellidae Porifera). Mar Biol 103:387–402

    Article  Google Scholar 

  • Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Facies 38:1–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hentschel, U. et al. (2003). Microbial Diversity of Marine Sponges. In: Müller, W.E.G. (eds) Sponges (Porifera). Progress in Molecular and Subcellular Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55519-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55519-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62471-1

  • Online ISBN: 978-3-642-55519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics