Skip to main content

The Family Chromatiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The Chromatiaceae is a family of the Chromatiales within the Gammaproteobacteria and closely related to the Ectothiorhodospiraceae. Representatives of both families are referred to as phototrophic purple sulfur bacteria and typically grow under anoxic conditions in the light using sulfide as photosynthetic electron donor, which is oxidized to sulfate via intermediate accumulation of globules of elemental sulfur. In Chromatiaceae species, the sulfur globules appear inside the cells; in Ectothiorhodospiraceae, they are formed outside the cells and appear in the medium. Characteristic properties of these bacteria are the synthesis of photosynthetic pigments, bacteriochlorophyll a or b, and various types of carotenoids and the formation of a photosynthetic apparatus with reaction center and antenna complexes localized within internal membrane systems. Phototrophic growth, photosynthetic pigment synthesis, and formation of the photosynthetic apparatus and internal membranes are strictly regulated by oxygen and light and become derepressed at low oxygen tensions. Typically, Chromatiaceae are enabled to the photolithoautotrophic mode of growth. A number of species also can grow photoheterotrophically using a limited number of simple organic molecules. Some species also can grow under chemotrophic conditions in the dark, either autotrophically or heterotrophically using oxygen as terminal electron acceptor in respiratory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anagnostides K, Overbeck J (1966) Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–174

    Google Scholar 

  • Arunasri K, Sasikala C, Ramana CV, Süling J, Imhoff JF (2005) Marichromatium indicum sp. nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa, India. Int J Syst Evol Microbiol 55:673–679

    PubMed  CAS  Google Scholar 

  • Asao M, Takaichi S, Madigan MT (2007) Thiocapsa imhoffii, sp. nov., an alkaliphilic purple sulfur bacterium of the family Chromatiaceae from Soap Lake, Washington (USA). Arch Microbiol 188:665–675

    PubMed  CAS  Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. G.Fischer, Jena, Germany

    Google Scholar 

  • Biebl H, Drews G (1969) Das in-vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentralbl Bakteriol Parasitenkde Infektionskr Hyg Abt II Orig 123:425–452

    CAS  Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    CAS  Google Scholar 

  • Biebl H, Pfennig N (1979) CO2-fixation by anaerobic phototrophic bacteria in lakes, a review. Arch Hydrobiol 12:18–58

    Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands

    Google Scholar 

  • Bolliger R, Zürrer H, Bachofen R (1985) Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria. Appl Microbiol Biotechnol 23:147–151

    CAS  Google Scholar 

  • Bosshard PP, Santini Y, Grüter D, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine lake cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31:173–182

    PubMed  CAS  Google Scholar 

  • Breuker E (1964) Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht- und Dunkelstoffwechsel. Zentralbl Bakteriol Parasitenkd Hyg Abt 118:561–568, 2

    CAS  Google Scholar 

  • Brown CM, Herbert RA (1977) Ammonia assimilation in purple and green sulfur bacteria. FEMS Microbiol Lett 1:39–42

    CAS  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221

    PubMed  CAS  Google Scholar 

  • Brune DC (1995a) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 847–870

    Google Scholar 

  • Brune DC (1995b) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399

    PubMed  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J, Mityushina L (1999) Thiorhodospira sibirica gen.nov., sp nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49:697–703

    PubMed  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF (2000) Thioalkalicoccus limnaeus gen nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Bacteriol 50:2157–2163

    Google Scholar 

  • Buder J (1915) Chloronium mirabile. Ber Dtsch Bot Ges 31:80–97

    Google Scholar 

  • Caldwell DE, Tiedje JM (1975) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21:362–376

    PubMed  CAS  Google Scholar 

  • Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon Ivory coast). Can J Microbiol 30:273–284

    CAS  Google Scholar 

  • Caumette P (1986) Phototrophic sulfur bacteria and sulfate reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prévost Lagoon, France). FEMS Microbiol Ecol 38:113–124

    CAS  Google Scholar 

  • Caumette P (1993) Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49:473–481

    CAS  Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas. Syst Appl Microbiol 10:284–292

    Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176

    Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans JC (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (salins-de-Giraud France). FEMS Microbiol Ecol 13:273–286

    CAS  Google Scholar 

  • Caumette P, Imhoff JF, Süling J, Matheron R (1997) Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167:11–18

    PubMed  CAS  Google Scholar 

  • Caumette P, Guyoneaud R, Imhoff JF, Süling J, Gorlenko VM (2004) Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol 54:1031–1036

    PubMed  CAS  Google Scholar 

  • Cerruti A (1938) Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bollettino di Pesca Piscicoltura ed Idrobiologia 14:711–751

    Google Scholar 

  • Clayton RK, Sistrom WR (eds) (1978) The photosynthetic bacteria. Plenum, New York

    Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977) Solar lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620

    CAS  Google Scholar 

  • Cohn F (1875) Untersuchungen über Bakterien. II. Beitr Biol Pflanz 1:141–207

    Google Scholar 

  • Cooper RC (1963) Photosynthetic bacteria in waste treatment. Dev Ind Microbiol 4:95–103

    CAS  Google Scholar 

  • Cooper RC, Oswald WJ, Bronson JC (1965) Treatment of organic industrial wastes by lagooning. In: Proceedings of the 20th industrial waste conference, Engineering Bulletin Purdue University. Engineering Extension, Ser. No. 118, pp 351–363

    Google Scholar 

  • Cooper DE, Rands MB, Woo C-P (1975) Sulfide reduction in fellmongery effluent by red sulfur bacteria. J Water Pollut C 47:2088–2100

    CAS  Google Scholar 

  • Cviic V (1955) Red water in the lake “Malo Jezero” (island of mljet). Acta Adriatica 6:1–15

    Google Scholar 

  • Cviic V (1960) Apparition d’eau rouge dans le Veliko Jezero (Ile de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’Exloration Scientifique de la Mer Mediterranée 15:79–81

    Google Scholar 

  • Czeczuga B (1968) Primary production of the purple sulfuric bacteria thiopedia rosea winogr. (Thiorhodaceae). Photosynthetica 2:161–166

    Google Scholar 

  • Dahl C, Rákhely G, Pott-Sperling AS, Fodor B, Takáks M, Tóth AS, Kraeling M, Gyórfi K, Kovács A, Tusz J, Kovács KL (1999) Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180:317–324

    PubMed  CAS  Google Scholar 

  • Davidson MW, Gray GO, Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c −552 with cytochromes c studied by affinity chromatography. FEMS Microbiol Lett 187:155–159

    CAS  Google Scholar 

  • Dawyndt et al (2006): http://dx.doi.org/10.1109/TKDE.2005.131

  • De Wit R, Van Gemerden H (1990a) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154:459–464

    Google Scholar 

  • De Wit R, Van Gemerden H (1990b) Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76

    Google Scholar 

  • Dolata MM, van Beeumen JJ, Ambler RP, Meyer TE, Cusanovich MA (1993) Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein and a homolog of human ankyrin. J Biol Chem 268:14426–14431

    PubMed  CAS  Google Scholar 

  • Drews G (1989) Energy transduction in phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech. Publ/Springer-Verlag, Madison, WI/New York, pp 461–480

    Google Scholar 

  • Drews G, Imhoff JF (1991) Phototrophic purple bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 51–97

    Google Scholar 

  • Düggeli M (1924) Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrobiologie 2:65–205

    Google Scholar 

  • Ehrenberg CG (1838) Die Infusionsthierchen als vollkommene Organismen: ein Blick in das tiefere organische Leben der Natur. L. Voss, Leipzig, pp 1–17; 1–547

    Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300

    CAS  Google Scholar 

  • Eichler B, Pfennig N (1988) A new green sulfur bacterium from a freshwater pond. In: Olson JM, Stackebrandt E, Trüper H (eds) Green photosynthetic bacteria. Plenum, New York, pp 233–235

    Google Scholar 

  • Eimhjellen KE (1970) Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Arch Microbiol 73:193–194

    CAS  Google Scholar 

  • Eimhjellen KE, Steensland H, Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Microbiol 59:82–92

    CAS  Google Scholar 

  • Filippi GM, Vennes JW (1971) Biotin production and utilization in a sewage treatment lagoon. Appl Microbiol 22:49–54

    Google Scholar 

  • Folt CL, Wevers MJ, Yoder-Williams MP, Howmiller RP (1989) Field studies comparing growth and viability of a population of phototrophic bacteria. Appl Environ Microbiol 55:78–85

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fowler VJ, Pfennig N, Schubert W, Stackebrandt E (1984) Towards a phylogeny of phototrophic purple sulfur bacteria - 16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139:382–387

    CAS  Google Scholar 

  • Frigaard N-U, Dahl C (2008) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200

    Google Scholar 

  • Fuller RC, Smillie RM, Sisler EC, Kornberg HL (1961) Carbon metabolism in chromatium. J Biol Chem 236:2140–2149

    PubMed  CAS  Google Scholar 

  • Gaffron H (1935) Über die Kohlensäureassimilation der roten Schwefelbakterien II. Biochem Z 279:1–33

    CAS  Google Scholar 

  • Gasol JM, Guerrero R, Pedros-Alio C (1991) Seasonal variations in size structure and prokaryotic dominance in sulfurous Lake Ciso. Limnol Oceanogr 36:860–872

    Google Scholar 

  • Genovese S (1963) The distribution of the H2S in the lake of faro (Messina) with particular regard to the presence of “red water”. In: Oppenheimer CH (ed) Symposium on marine microorganisms. Charles C. Thomas, Springfield, pp 194–204

    Google Scholar 

  • Giesberger G (1947) Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek J Microbiol Serol 13:135–148

    Google Scholar 

  • Glaeser J, Overmann J (1999) Selective enrichment and characterisation of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171:405–416

    PubMed  CAS  Google Scholar 

  • Gloyna EF (1971) Waste stabilization ponds. World Health Organization monograph series No. 60. World Health Organization, Geneva

    Google Scholar 

  • Gogotov IN (1978) Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria. Biochimie 60:267–275

    PubMed  CAS  Google Scholar 

  • Gogotov IN (1984) Hydrogenase of purple bacteria: properties and regulation of synthesis. Arch Microbiol 140:86–90

    CAS  Google Scholar 

  • Gogotov IN (1986) Hydrogenases of phototrophic microorganisms. Biochimie 68:181–187

    PubMed  CAS  Google Scholar 

  • Gorlenko VM (1974) Oxidation of thiosulfate by Amoebobacter roseus in the darkness under microaerobic conditions. Microbiologiya 43:729–731

    CAS  Google Scholar 

  • Gorlenko VM, Vainstein MB, Kachalkin VI (1978) Microbiological characteristic of Lake Mogilnoye. Arch Hydrobiol 81:475

    CAS  Google Scholar 

  • Gorlenko VM, Dubinina GA, Kusnetsov SI (1983) The ecology of aquatic microorganisms. In: Ohle W (ed) Binnengewässer. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, p 254, Monograph

    Google Scholar 

  • Guerrero R, Pedros-Alío C, Esteve I, Mas J (1987) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Abonensis 47:125–151

    Google Scholar 

  • Guindon, Gascuel (2005): http://dx.doi.org/10.1080/10635150390235520

  • Guyoneaud R, Süling J, Petri R, Matheron R, Caumette P, Pfennig N, Imhoff JF (1998) Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov. Int J Syst Bacteriol 48:957–964

    PubMed  CAS  Google Scholar 

  • Hallenbeck PC (1987) Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Crit Rev Microbiol 14:1–48

    PubMed  CAS  Google Scholar 

  • Haselkorn R (1986) Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria. Ann Rev Microbiol 40:525–547

    CAS  Google Scholar 

  • Hashwa FA, Trüper HG (1978) Viable phototrophic sulfur bacteria from the Black-Sea bottom. Helgol Dander Wiss Meeresunters 31:249–253

    Google Scholar 

  • Hatzikakidis AD (1952) Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon praktikon Ellenikou Ydrobiolog Inst Akad Athen 6:21–52

    Google Scholar 

  • Hatzikakidis AD (1953) Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon praktikon Ellenikou Ydrobiol Inst Akad Athen 6:85–143

    Google Scholar 

  • Hauser B, Michaelis H (1975) Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung, Jahresbericht Forschungsstelle für Insel- und Küstenschutz 1974. Norderney 26:85–119

    Google Scholar 

  • Heldt HJ (1952) Eaux rouges. Bull Soc Sci Nat Tunisie 5:103–106

    Google Scholar 

  • Hendley DD (1955) Endogenous fermentation in Thiorhodaceae. J Bacteriol 70:625–634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hiraishi A, Hoshino Y, Kitamura H (1984) Isoprenoid quinone composition in the classification of Rhodospirillaceae. J Gen Appl Microbiol 30:197–210

    CAS  Google Scholar 

  • Hoffmann C (1942) Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108

    Google Scholar 

  • Hoffmann C (1949) Über die Durchlässigkeit dünner Sandschichten für Licht. Planta 37:48–56

    Google Scholar 

  • Holm HW, Vennes JW (1970) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19:988–996

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holm HW, Vennes JW (1971) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19:988–996

    Google Scholar 

  • Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst Appl Microbiol 4:512–521

    PubMed  CAS  Google Scholar 

  • Imhoff JF (1984a) Reassignment of the genus Ectothiorhodospira pelsh 1936 to a new family, Ectothiorhodospiraceae fem. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 134:338–339

    Google Scholar 

  • Imhoff JF (1984b) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89

    CAS  Google Scholar 

  • Imhoff JF (1988a) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 85–108

    Google Scholar 

  • Imhoff JF (1988b) Anoxygenic phototrophic bacteria. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, Chichester, UK, pp 207–240

    Google Scholar 

  • Imhoff JF (1992) Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In: Carr NG, Mann NH (eds) Biotechnology handbook photosynthetic prokaryotes. Plenum, London/New York, pp 53–92

    Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254

    PubMed  CAS  Google Scholar 

  • Imhoff JF (2005) Family Chromatiaceae. In: Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology, vol 2 Part B, 2nd edn. Springer, New York, pp 3–9 and following chapters

    Google Scholar 

  • Imhoff JF (2011) Functional gene studies of pure cultures are the basis of systematic studies of environmental communities of phototrophic bacteria and their species specific analyses. BISMiS Bulletin 2:107–115

    Google Scholar 

  • Imhoff JF, Bias-Imhoff U (1995) Lipids, Quinones and fatty acids of anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 179–205

    Google Scholar 

  • Imhoff JF, Pfennig N (2001) Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 51:105–110

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Süling J (1996) The phylogenetic relationship among ectothiorhodospiraceae. A reevaluation of their taxonomy on the basis of rDNA analyses. Arch Microbiol 165:106–113

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecol 3:1–9

    CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1980) Chromatium purpuratum sp. nov., a new species of the Chromatiaceae. Zbl Bakt I Abt Orig 1:61–69

    Google Scholar 

  • Imhoff JF, Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zbl Bakt I Abt Orig C 2:228–234

    Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The wadi natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J1:219–234

    Google Scholar 

  • Imhoff JF, Kushner DJ, Kushawa SC, Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150:1192–1201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48:1129–1143

    PubMed  Google Scholar 

  • Irgens RL (1983) Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur bacteria. Curr Microbiol 8:183–186

    CAS  Google Scholar 

  • Isachenko BL (1914). Studies of bacteria of the Arctic Ocean. Cited in: Gorlenko, Vainstein and Kachalkin, 1978

    Google Scholar 

  • Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Arch Hydrobiol 53:425–433

    Google Scholar 

  • Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38(suppl 2):1083–1103

    Google Scholar 

  • Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135

    Google Scholar 

  • Kämpf C, Pfennig N (1986) Isolation and characterization of some chemoautotrophic Chromatiaceae. J Basic Microbiol 9:507–515

    Google Scholar 

  • Kobayashi M (1977) Utilization and disposal of wastes by photosynthetic bacteria. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Oxford, pp 443–453

    Google Scholar 

  • Kobayashi M, Kobayashi M (1995) Waste remediation and treatment using anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 1269–1282

    Google Scholar 

  • Kobayashi M, Tchan YT (1973) Treatment of industrial waste solutions and production of useful byproducts using photosynthetic bacterial method. Water Res 7:1219–1224

    CAS  Google Scholar 

  • Kobayashi M, Tchan YT (1978) Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria. Water Res 12:199–201

    CAS  Google Scholar 

  • Kobayashi M, Kobayashi M, Nakanishi H (1971) Construction of a purification plant for polluted water using photosynthetic bacteria. J Ferment Technol 49:817–825

    CAS  Google Scholar 

  • Kondratieva EN (1965) Photosynthetic bacteria. Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quale JR (ed) Microbial biochemistry. International review of biochemistry, vol 21. University Park Press, Baltimore, pp 117–175

    Google Scholar 

  • Kondratieva EN, Gogotov IN (1983) Production of molecular hydrogen in microorganism. Adv Biochem Eng Biotechnol 28:139–191

    CAS  Google Scholar 

  • Kondratieva EN, Petushkova YUP, Zhukov VG (1975) Growth and oxidation of sulfur compounds by Thiocapsa roseopersicina in the darkness. Mikrobiologiya 44:389–394 (In Russian, with English summary)

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanowsky RN, Petruskova YP, Monosov EZ (1976) The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292

    PubMed  CAS  Google Scholar 

  • Koppenhagen V (1981) Metal-free corrinoids and metal-insertion. In: Dolphin D (ed) Vitamin B12, vol 2. Wiley, New York, pp 105–149

    Google Scholar 

  • Koppenhagen V, Schlingmann G, Scher W, Dresow B (1981) Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12. In: Moo-Young M (ed) Advances in biotechnology. Pergamon, New York, pp 247–252

    Google Scholar 

  • Krasilnikova EN (1976) Anaerobic metabolism of Thiocapsa roseopersicina. Mikrobiologiya 45:372–376 (In Russian, with English summary)

    CAS  Google Scholar 

  • Krasilnikova EN, Petushkova YP, Kondratieva EN (1975) Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness. Mikrobiologiya 44:700–703 (In Russian, with English summary)

    CAS  Google Scholar 

  • Krasilnikova EN, Ivanovskii RN, Kondratieva EN (1983) Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness. Mikrobiologiya 52:189–194 (English translation edition)

    Google Scholar 

  • Kriss AE, Rukina EA (1953) Purple sulfur bacteria in deep sulfurous water of the Black Sea. Dokl Akad Nauk SSSR 93:1107–1110 (In Russian)

    PubMed  CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2007a) Halochromatium roseum sp. nov., a non-motile phototrophic gammaproteobacterium with gas vesicles, and emended description of the genus Halochromatium. Int J Syst Evol Microbiol 57:2110–2113

    PubMed  CAS  Google Scholar 

  • Kumar PA, Sasi Jyothsna TS, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2007b) Marichromatium bheemlicum sp. nov., a non-diazotrophic photosynthetic gammaproteobacterium from a marine aquaculture pond. Int J Syst Evol Microbiol 57:1261–1265

    PubMed  CAS  Google Scholar 

  • Kumar PA, Sasi Jyothsna TS, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2007c) Two novel species of marine phototrophic gammaproteobacteria: Thiorhodococcus Bheemlicus sp. nov. and Thiorhodococcus kakinadensis sp. nov. Int J Syst Evol Microbiol 57:2458–2461

    CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2008a) Allochromatium renukae sp. nov. Int J Syst Evol Microbiol 58:404–407

    CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2008b) Thiophaeococcus mangrovi gen. nov., sp. nov., a photosynthetic marine gammaproteobacterium isolated from Bhitarkanika mangrove forest India. Int J Syst Evol Microbiol 58:2660–2664

    CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Thiel V, Tank M, Sasikala C, Ramana CV, Imhoff JF (2009) A new species of Thiohalocapsa, Thiohalocapsa marina sp. nov., from an Indian marine aquaculture pond. Int J Syst Evol Microbiol 59:2333–2338

    CAS  Google Scholar 

  • Kumazawa S, Mitsui A (1982) Hydrogen metabolism of photosynthetic bacteria and algae. In: Mitsui A, Black CC (eds) Handbook of biosolar resources, vol 1. CRC Press, Boca Raton, pp 299–316

    Google Scholar 

  • Kusnetzov SI (1970) The microflora of lakes and its geochemical activity. University of Texas Press, Austin/London

    Google Scholar 

  • Kützing FT (1883) Beiträge zur Kenntnis über die Entstehung und Metamorphose er niederen vegetabilischen Organismen, nebst einer systematische Zusammenstellung der hierher gehörigen niederen Algenformen. Linnaea 8:335–384

    Google Scholar 

  • Lankester R (1873) On a peach-colored bacterium – bacterium Rubescens n.s. Q J Micros Sci 13:408–425

    Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (eds) (1992) International code of nomenclature of bacteria (1990 revision). bacteriological code. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Larsen H (1952) On the culture and general physiology of the green sulfur bacteria. J Bacteriol 64:187–196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421

    CAS  Google Scholar 

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 99:227–232

    CAS  Google Scholar 

  • Lindholm T (1987) Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons. ABO Academy Press, Abo

    Google Scholar 

  • Ludden PW, Roberts GP (1995) The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 929–947

    Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36:222–227

    CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 915–928

    Google Scholar 

  • May DS, Stahl JB (1967) The ecology of chromatium in sewage ponds. Bulletin No. 303, Sanitary Engineering Section Report No. 36, Coll. Engin. Res. Div., Washington State University, Pullman

    Google Scholar 

  • Mitsui A (1975) The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms. In: Veziroglu TN (ed) Hydrogen energy. Plenum, New York, pp 309–316

    Google Scholar 

  • Mitsui A (1979) Biosaline research. In: Hollaender A, Aller JC, Epstein E, San Pietro A, Zaborsky O (eds) The use of photosynthetic marine organisms in food and feed production. Plenum, New York, pp 177–215

    Google Scholar 

  • Miyoshi M (1897) Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Zentral Bakteriol Parasitenkund Infekt 3:526–527, Abt. 2

    Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neueren Untersuchungen. G. Fischer, Jena, pp 1–95

    Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    CAS  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444

    PubMed  CAS  Google Scholar 

  • Pedros-Alio C, Guerrero R (1993) Microbial ecology in Lake Ciso. Adv Microbiol Ecol 13:155–209

    Google Scholar 

  • Peduzzi S, Welsh A, Demarta A, Decristophoris P, Peduzzi R, Hahn D, Tonolla M (2011) Thiocystis chemoclinalis sp. nov. and Thiocystis cadagnonensis sp. nov., motile purple sulfur bacteria isolated from the chemocline of a meromictic lake. Int J Syst Evol Microbiol 61:1682–1687

    PubMed  CAS  Google Scholar 

  • Petri R, Imhoff JF (2001) Genetic analysis of sea-ice bacterial communities of the western Baltic Sea using an improved double gradient method. Polar Biol 24:252–257

    Google Scholar 

  • Pfennig N (1962) Beobachtungen über das Schwärmen von Chromatium okenii. Arch Microbiol 42:90–95

    CAS  Google Scholar 

  • Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralbl Bakteriol Parasitenkd Infektionskrankh. Hyg. Abt. 1, Orig. Suppl. (1):179–189, pp 503–505

    Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21:285–324

    PubMed  CAS  Google Scholar 

  • Pfennig N (1989a) Genus Chromatium. In: Staley JT, Bryant MP, Pfennig BN, Holt JC (eds) Bergeys manual of systematic bacteriology, vol 3, 1st edn. The Williams & Wilkins, Baltimore, pp 1639–1643

    Google Scholar 

  • Pfennig N (1989b) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag, Berlin, Heidelberg, New York, pp 97–116

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    CAS  Google Scholar 

  • Pfennig N, Trüper HG (1971) Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 21:17–18

    Google Scholar 

  • Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams & Wilkins, Baltimore, pp 24–75

    Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 279–289

    Google Scholar 

  • Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 3200–3221

    Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi, gen. nov. and spec. nov., a new phototrophic proteobacterium of the alpha-group. Arch Microbiol 168:39–45

    PubMed  CAS  Google Scholar 

  • Podgorsek L, Imhoff JF (1999) Tetrathionate production by sulfur-oxidizing bacteria and the role of tetrathionate in the sulfur cycle in sediments of the Baltic Sea. Aquat Microbial Ecol 17:255–265

    Google Scholar 

  • Proctor LM (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat Microb Ecol 12:105–113

    Google Scholar 

  • Puchkova NN, Imhoff JF, Gorlenko VM (2000) Thiocapsa litoralis sp. nov., a new purple sulfur bacterium from microbial mats from the White Sea. Int J Syst Evol Microbiol 50:1441–1447

    PubMed  CAS  Google Scholar 

  • Rabold S, Gorlenko VM, Imhoff JF (2006) Thiorhodococcus mannitoliphagus sp. nov., a new purple sulfur bacterium from the White Sea. Int J Syst Evol Microbiol 56:1945–1951

    PubMed  CAS  Google Scholar 

  • Rees GN, Harfoot CG, Janssen PH, Schoenborn L, Kuever J, Lünsdorf H (2002) Thiobaca trueperi gen. nov., sp. nov., a phototrophic bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 52:671–678

    PubMed  CAS  Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the black Sea. Nature 342:69–72

    PubMed  CAS  Google Scholar 

  • Roelofson PA (1935) On the metabolism of the purple sulfur bacteria. Proc K Ned Akad Wet 37:660–669

    Google Scholar 

  • Ruttner F (1962) Grundriss der limnologie, 3rd edn. De Gruyter, Berlin, pp 171–172

    Google Scholar 

  • Sahl HG, Trüper HG (1977) Enzymes of CO2 fixation in Chromatiaceae. FEMS Microbiol Lett 2:129–132

    CAS  Google Scholar 

  • Sasikala K, Ramana CV, Rao PR, Kovacs KL (1993) Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology. Adv Appl Microbiol 38:211–295

    CAS  Google Scholar 

  • Schaub BEM, Van Gemerden H (1994) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbial Ecol 13:185–196

    CAS  Google Scholar 

  • Schedel M, Vanselow M, Trüper HG (1979) Siroheme sulfite reductase isolated from Chromatiuni vinosum. Arch Microbiol 121:29–36

    CAS  Google Scholar 

  • Schegg E (1971) Produktion und Destruktion in der trophogenen Schicht. Schweiz Z Hydrol 33:427–532

    Google Scholar 

  • Schlegel HG, Pfennig N (1961) Die Anreicherungskultur einiger Schwefelpurpurbakterien. Arch Mikrobiol 38:1–39

    PubMed  CAS  Google Scholar 

  • Schrammeck J (1934) Untersuchungen über die Phototaxis der Purpurbacterien. Beiträge zur Biologie der Pflanzen 22:315–380

    Google Scholar 

  • Schulz E (1937) Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1:359–378

    Google Scholar 

  • Schulz E, Meyer H (1939) Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3:321–336

    Google Scholar 

  • Shivali K, Ramana VV, Ramaprasad EVV, Sasikala C, Ramana CV (2011) Marichromatium litoris sp. nov. and marichromatium chrysaorae sp. nov. Isolated from beach sand and from a jelly fish (Chrysaora colorata). Syst Appl Microbiol 34:600–605

    PubMed  CAS  Google Scholar 

  • Siefert E, Pfennig N (1984) Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101

    CAS  Google Scholar 

  • Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–44

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sletten O, Singer RH (1971) Sulfur bacteria in red lagoons. J Water Pollut C 43:2118–2122

    CAS  Google Scholar 

  • Smith AJ (1965) The discriminative oxidation of the sulfur atoms of thiosulphate by a photosynthetic sulfur bacterium – chromatium strain D. Biochem J 94:27

    Google Scholar 

  • Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. Strain D. J Gen Microbiol 42:371–380

    PubMed  CAS  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulfur and carbon turnover in a meromictic lake. Arch Hydrobiol 66:391–446

    Google Scholar 

  • Srinivas TNR, Kumar PA, Sucharita K, Sasikala C, Ramana CV (2009) Allochromatium phaeobacterium sp. nov. Int J Syst Evol Microbiol 59:750–753

    PubMed  CAS  Google Scholar 

  • Steenbergen CLM, Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands): pigment analysis and role in primary production. Limnol Oceanogr 27:883–895

    CAS  Google Scholar 

  • Steudel R (1989) On the nature of the “elemental sulfur”(S°) produced by sulfur-oxidizing bacteria – a model for S° globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech. Publ/Springer, Madison/New York, pp 289–304

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT, van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437

    CAS  Google Scholar 

  • Stirn J (1971) Ecological consequences of marine pollution. Rev Internat Oceanogr Med 24:13–46

    CAS  Google Scholar 

  • Strzeszewski B (1913) Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bull Int Acad Sci Cracovie Ser B Sci Nat I:309–334

    Google Scholar 

  • Sucharita K, Sasikala C, Ramana CV (2010a) Thiorhodococcus modestalkaliphilus sp. nov. a phototrophic gammaproteobacterium from chilika salt water lagoon India. J Gen Appl Microbiol 56:93–99

    PubMed  CAS  Google Scholar 

  • Sucharita K, Kumar ES, Sasikala CH, Panda BB, Takaichi S, Ramana CV (2010b) Marichromatium fluminis sp. nov., a slightly alkaliphilic, phototrophic gammaproteobacterium isolated from river sediment. Int J Syst Evol Microbiol 60:1103–1107

    PubMed  CAS  Google Scholar 

  • Suckow R (1966) Schwefelmikrobengesellschaften der See- und Boddengewässer von Hiddensee. Z Allgem Mikrobiol 6:309–315

    Google Scholar 

  • Szafer W (1910) Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bull Int Acad Sci Ser V. Cracovie, pp 160–167

    Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 885–914

    Google Scholar 

  • Taga N (1967) Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria. Information Bulletin on Planktology in Japan. Commemorative number of Y. Matsue’s sixtieth birthday, pp 219–229

    Google Scholar 

  • Takahashi M, Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanogr 13:644–655

    Google Scholar 

  • Tank M, Thiel V, Imhoff JF (2009) Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 12:175–185

    PubMed  CAS  Google Scholar 

  • Tank M, Blümel M, Imhoff JF (2011) Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol Ecol 78:428–438

    PubMed  CAS  Google Scholar 

  • Taylor WR (1964) Light and photosynthesis in intertidal benthic diatoms. Helgol Wiss Meeresunters 10:29–37

    CAS  Google Scholar 

  • Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF (2010) Unique communities of anoxygenic phototrophic bacteria in saline lakes of salar de Atacama (Chile). Evidence for a new phylogenetic lineage of phototrophic gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 74:510–522

    PubMed  CAS  Google Scholar 

  • Toohey JI (1971) Purification of descobalt corrins from photosynthetic bacteria. In: McCormick DB, Wright LD (eds) Methods in enzymology, vol 18. Academic, New York, pp 71–75

    Google Scholar 

  • Tourova TP, Keppen OI, Kovaleva OL, Slobodova NV, Berg IA, Ivanovsky RN (2009) Phylogenetic characterization of the purple sulfur bacterium thiocapsa sp. BBS by analysis of the 16S rRNA, cbbL, and nifH genes and its description as Thiocapsa bogorovii sp. nov., a new species. Microbiology 78:339–349

    CAS  Google Scholar 

  • Trüper HG (1964) CO2-Fixierung und intermediärstoffwechsel bei Chromatium okenii perty. Arch Mikrobiol 49:23–50

    Google Scholar 

  • Trüper HG (1970) Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgol Wiss Meeresunters 20:6–16

    Google Scholar 

  • Trüper HG (1980) Distribution and activity of phiototrophic bacteria at the marine water-sediment interface. Coloques Int CNRS Biogéochem matière organ interface eau-sédiment marin 293:275–285

    Google Scholar 

  • Trüper HG (1981a) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211

    Google Scholar 

  • Trüper HG (1981b) Versatility of carbon metabolism in the phototrophic bacteria. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 116–121

    Google Scholar 

  • Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A, Krebs B (eds) Sulfur, its significance for chemistry, for the geo-, bio- and cosmophere and technology. Elsevier, Amsterdam, pp 367–382

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publ/Springer, Madison/New York, pp 267–282

    Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B B 298:529–542

    Google Scholar 

  • Trüper HG, Genovese S (1968) Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina Sicily). Limnol Oceanogr 13:225–232

    Google Scholar 

  • Trüper HG, Imhoff JF (1981) The genus Ectothiorhodospira. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 274–278

    Google Scholar 

  • Trüper HG, Pfennig N (1966) sulfur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulfur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J Microbiol Serol 32:261–276

    Google Scholar 

  • Utermöhl H (1925) Limnologische phytoplanktonstudien. Arch Hydrobiol Supp 5:251–277

    Google Scholar 

  • Van Gemerden H (1968a) Utilization of reducing power in growing cultures of Chromatium. Arch Microbiol 65:111–117

    Google Scholar 

  • Van Gemerden H (1968b) On the ATP generation by Chromatium in darkness. Arch Mikrobiol 64:118–124

    PubMed  Google Scholar 

  • Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb Ecol 1:19–23

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1983) Ecology of phototrophic bacteria. In: Ormerod JG (ed) The phototrophic bacteria: anaerobic life in the light. Blackwell, Oxford, pp 146–185

    Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 49–85

    Google Scholar 

  • Van Gemerden H, Montesinos E, Mas J, Guerrero R (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol Oceanogr 30:932–943

    Google Scholar 

  • Van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Microbiol 3:1–112

    CAS  Google Scholar 

  • Van Niel CB (1971) Techniques for the enrichment, isolation, and maintenance of photosynthetic bacteria. In: Collowick SP, Kaplan NV (eds) Methods in enzymology, vol 23, part A. Academic, New York, pp 3–28

    Google Scholar 

  • Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Adv Microb Physiol 26:155–234

    PubMed  CAS  Google Scholar 

  • Vignais PM, Toussaint B, Colbeau A (1995) Regulation of hydrogenase gene expression. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1175–1190

    Google Scholar 

  • Vrati S (1984) Single cell protein production by photosynthetic bacteria grown on the clarified effluents of a biogas plant. Appl Microbiol Biotechnol 19:199–202

    CAS  Google Scholar 

  • Warming E (1875) Om nogle ved Danmarks Kyster levende Bakterier. Videnskabelige Meddelelser Dansk naturhistorisk Foreninge 20:307–420

    Google Scholar 

  • Weckesser J, Drews G, Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annu Rev Microbiol 33:215–239

    PubMed  CAS  Google Scholar 

  • Weckesser J, Mayer H, Schulz G (1995) Anoxygenic phototrophic bacteria: model organisms for studies on cell wall macromolecules. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 207–230

    Google Scholar 

  • Wenke TL, Vogt JC (1981) Temporal changes in a pink feedlot lagoon. Appl Environ Microbiol 41:381–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    CAS  Google Scholar 

  • Winogradsky S (1888) Beiträge zur Morphologie und Physiologie der Bakterien. Heft 1. Zur Morphol Physiol Schwefelbakterien. Arthur Felix, Leipzig, pp 1–120

    Google Scholar 

  • Yarapolov AI, Malovik V, Isumrudov VA, Zorin NA, Bachurin SO, Gogotov IN, Varfolomeev SD (1982) Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell. Appl Biochem Microbiol 18:401–406. (English translation from Russian)

    Google Scholar 

  • Yarza et al (2010): http://dx.doi.org/10.1016/j.syapm.2010.08.001

  • Zaar A, Fuchs G, Golecki JR, Overmann J (2003) A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Arch Microbiol 179:174–183

    PubMed  CAS  Google Scholar 

  • Zahr M, Fobel B, Mayer H, Imhoff JF, Campos V, Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157:499–504

    CAS  Google Scholar 

  • Zeng YH, Jiao NZ (2007) Source environment feature related phylogenetic distribution pattern of anoxygenic photosynthetic bacteria as revealed by pufM analysis. J Microbiol 45:205–212

    PubMed  CAS  Google Scholar 

  • Zhukov VG (1976) Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions. Mikrobiologiya 45:915–917

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Imhoff, J.F. (2014). The Family Chromatiaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38922-1_295

Download citation

Publish with us

Policies and ethics