Skip to main content

38 Cold-Water Coral in Aquaria: Advances and Challenges. A Focus on the Mediterranean

  • Chapter
  • First Online:
Mediterranean Cold-Water Corals: Past, Present and Future

Abstract

Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting specimens and rearing them in aquaria, is particularly challenging for deep-sea organisms like cold-water corals. Field experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies has been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions since these organisms inhabit areas between ca. 150 m to more than 1000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home laboratories is also extremely challenging since special conditions and set-ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and is envisioned as both to be a practical “handbook” for conducting cold-water coral aquaria work, whilst at the same time offering an overview on the cold-water coral research conducted in Mediterranean laboratories equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with cold-water coral work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with cold-water corals in aquaria. It was impossible to include contributions from all laboratories in the world currently working experimentally with cold-water corals in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of several laboratories with operational cold-water coral aquaria facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JR (1998) Suspension feeding in the brittle-star Ophiothrix fragilis: efficiency of particle retention and implications for the use of encounter-rate models. Mar Biol 132:383–390

    Article  Google Scholar 

  • Allers E, Abed RM, Wehrmann LM, et al (2013) Resistance of Lophelia pertusa to coverage by sediment and petroleum drill cuttings. Mar Poll Bull 74:132–140

    Article  CAS  Google Scholar 

  • Berntsson KM, Jonsson PR, Larsson AI, et al (2004) Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Mar Ecol Prog Ser 275:199–210

    Article  Google Scholar 

  • Borneman EH, Lowrie J (2001) Advances in captive husbandry: An easily utilized reef replenishment means from the private sector? Bull Mar Sci 69:897–913

    Google Scholar 

  • Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Marine Biology 160:139–153

    Article  Google Scholar 

  • Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa. Cont Shelf Res 23:847–858

    Article  Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675

    Article  Google Scholar 

  • Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161

    Article  Google Scholar 

  • Brooke S, Holmes M, Young CM (2009) Effects of sediment on two morphotypes of Lophelia pertusa from the Gulf of Mexico. Mar Ecol Prog Ser 390:137–144

    Article  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, et al (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204. https://doi.org/10.1126/science.1195223

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, et al (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476

    Article  Google Scholar 

  • Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239

    Article  CAS  Google Scholar 

  • Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion con- centration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res Part 1 Oceanogr Res Pap 40:2115–2129

    Article  CAS  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  • Crossland C (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • de Goeij JM, Moodley L, Houtekamer M, et al (2008) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: Evidence for DOM-feeding. Limnol Oceanogr 53:1376–1386

    Article  Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA, et al (2013) Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342:108–110

    Article  CAS  PubMed  Google Scholar 

  • DeLeo DM, Ruiz-Ramos DV, Baums IB, et al (2016) Response of deep-water corals to oil and chemical dispersant exposure. Deep-Sea Res Part 2 Top Stud Oceanogr 129:137–147

    Article  CAS  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Dodds LA, Black KD, Orr H, et al (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124

    Article  CAS  Google Scholar 

  • Fisher CR, Hsing P-Y, Kaiser CL, et al (2014) Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proc Natl Acad Sci 111: 11744–11749. https://doi.org/10.1073/pnas.1403492111

    Article  CAS  Google Scholar 

  • Fox AD, Henry LA, Corne DW, et al (2016) Sensitivity of marine protected area network connectivity to atmospheric variability. Roy Soc Open Sci 3:160494

    Article  Google Scholar 

  • Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar Poll Bull 52:549–559

    Article  CAS  Google Scholar 

  • Georgian SE, Dupont S, Kurman M, et al (2016a) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37:1345–1359. https://doi.org/10.1111/maec.12373

    Article  Google Scholar 

  • Georgian SE, Deleo D, Durkin A, et al (2016b) Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: Implications for resilience in a changing ocean. Limnol Oceanogr 61:648–665. https://doi.org/10.1002/lno.10242

    Article  CAS  Google Scholar 

  • Gori A, Reynaud S, Orejas C, et al (2014a) Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preferences for temperate environments. Coral Reefs 33:665–674

    Article  Google Scholar 

  • Gori A, Grover R, Orejas C, et al (2014b) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 99:42–50

    Article  CAS  Google Scholar 

  • Gori A, Reynaud S, Orejas C, et al (2015) The influence of flow velocity and temperature on zooplankton capture rates by the cold-water coral Dendrophyllia cornigera. J Exp Mar Bio Ecol 466:92–97

    Article  Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige SJ, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. Peer J 4:e1606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2014) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr 99:27–35

    Article  CAS  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Article  Google Scholar 

  • Holdway DA (2002) The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes. Mar Poll Bull 44:185–203

    Article  CAS  Google Scholar 

  • Hunter T (1989) Suspension feeding in oscillating flow – the effect of colony morphology and flow regime on plankton capture by the hydroid Obelia longissima. Biol Bull 176:41–49

    Article  Google Scholar 

  • Järnegren J, Brooke S, Jensen H (2017) Effects of drill cuttings on larvae of the cold-water coral Lophelia pertusa. Deep-Sea Res Part 2 Top Stud Oceanogr 137:454–462

    Article  Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Coral reefs: research methods. UNESCO, Paris, pp 529–541

    Google Scholar 

  • Jonsson PR, Johansson M (1997) Swimming behaviour, patch exploitation and dispersal capacity of a marine benthic ciliate in flume flow. J Exp Mar Biol Ecol 215:135–153

    Article  Google Scholar 

  • Kaniewska P, Campbell PR, Kline DI, et al (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7:e34659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooijman S (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282

    Article  Google Scholar 

  • Kurman MD, Gomez CE, Georgian SE, et al (2017) Intra-specific variation reveals potential for adaptation to ocean acidification in a cold-water coral from the Gulf of Mexico. Front Mar Sci 4:111. https://doi.org/10.3389/fmars.2017.00111

    Article  Google Scholar 

  • Larsson AI, Jonsson PR (2006) Barnacle larvae actively select flow environments supporting post-settlement growth and survival. Ecology 87:1960–1966

    Article  PubMed  Google Scholar 

  • Larsson AI, Purser A (2011) Sedimentation on the cold-water coral Lophelia pertusa: Cleaning efficiency from natural sediments and drill cuttings. Mar Poll Bull 62:1159–1168

    Article  CAS  Google Scholar 

  • Larsson AI, Lundälv T, van Oevelen D (2013a) Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar Ecol Prog Ser 483:169–184

    Article  Google Scholar 

  • Larsson AI, van Oevelen D, Purser A, et al (2013b) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Poll Bull 70:176–188

    Article  CAS  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PloS One 9:e102222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196

    Article  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2014) Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res Part 2 Top Stud Oceanogr 99:64–70

    Google Scholar 

  • Lartaud F, Meistertzheim AL, Peru E, et al (2017a) In situ growth experiments of reef-building cold-water corals: the good, the bad and the ugly. Deep-Sea Res Part 1 Oceanogr Res Pap 121:70–78

    Article  Google Scholar 

  • Lartaud F, Galli G, Raza A, et al (2017b) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forest: The Ecology of Benthic Biodiversity Hotspots. Springer, Cham, pp 595–626

    Google Scholar 

  • Lasker HR (1988) The incidence and rate of vegetative propagation among coral reef alcyonarians. In: Proceedings of the 6th international coral reef symposium, vol 2, Australia, pp 763–768

    Google Scholar 

  • Leal MC, Ferrier-Pagès C, Petersen D, et al (2016) Coral aquaculture: applying scientific knowledge to ex situ production. Rev Aquacult 8:136–153

    Article  Google Scholar 

  • Levington J (1972) Stability and trophic structure in deposit feeding and suspension feeding communities. Am Nat 106:472–486

    Article  Google Scholar 

  • Lundälv T (2003) Kartläggning av marina habitat i Yttre Hvaler, nordöstra Skagerrak. En pilotstudie. Rapport till Fylkesmannen i Østfold och Nordiska Ministerrådet, 16 p

    Google Scholar 

  • Lunden JJ, Georgian SE, Cordes EE (2013) Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol Oceanogr 58:354–362. https://doi.org/10.4319/lo.2013.58.1.0354

    Article  Google Scholar 

  • Lunden JJ, Turner JM, Mcnicholl CG, et al (2014a) Design, development, and implementation of recirculating aquaria for maintenance and experimentation of deep-sea corals and associated fauna. Limnol Oceanogr Methods 12:363–372. https://doi.org/10.4319/lom.2014.12.363

    Article  Google Scholar 

  • Lunden JJ, McNicholl CG, Sears CR, et al (2014b) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:1–12. https://doi.org/10.3389/fmars.2014.00078

    Article  Google Scholar 

  • Maier C (2008) High recovery potential of the cold-water coral Lophelia pertusa. Coral Reefs 27:821–821

    Article  Google Scholar 

  • Maier C, Soest Rv, Hühnerbach V, et al (2006) Biology and ecosystem functioning of cold water coral bioherms at Mingulay, NE Atlantic. Cruise Report R/V Pelagia, cruise 64PE250, 63 pp. http://melia.nioz.nl/public/dmg/rpt/crs/64pe250.pdf

  • Maier C, Weinbauer MG, Soest RV, et al (2007) Sponge diversity in cold water coral bioherms and calcification rate and prokaryote-coral associations of Lophelia pertusa (Skagerrak, North Sea). Cruise Report R/V Pelagia, cruise 64PE263, 30 pp. http://melia.nioz.nl/public/dmg/rpt/crs/64pe263.pdf

  • Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Article  CAS  Google Scholar 

  • Maier C, Kluijver A, Agis M, et al (2011) Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences 8:2609–2620

    Article  CAS  Google Scholar 

  • Maier C, Watremez P, Taviani M, et al (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B 279:1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Maier C, Bils F, Weinbauer MG, et al (2013a) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:5671–5680

    Article  Google Scholar 

  • Maier C, Schubert A, Sanchez MMB, et al (2013b) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PloS One 8:e62655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217

    Article  PubMed  Google Scholar 

  • Maier S, Kutti T, Bannister RJ, van Breugel P, van Rijswijk P, van Oevelen D (in press) Survival under conditions of variable food availability: resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol Oceanogr. https://doi.org/10.1002/lno.11142

    Article  Google Scholar 

  • Martin P, Goodkin NF, Stewart JA, et al (2016) Deep-sea coral d13C: A tool to reconstruct the difference between seawater pH and d11B-derived calcification site pH. Geophy Res Lett 43:299–308

    Google Scholar 

  • McCulloch M, Trotter J, Montagna P, et al (2012) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34

    Article  CAS  Google Scholar 

  • Meistertzheim AL, Lartaud F, Arnaud-Haond S, et al (2016) Patterns of bacteria- host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Res Part 1 Oceanogr Res Pap 114:12–22

    Article  Google Scholar 

  • Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, et al (2000) The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Middelburg JJ, Mueller CE, Veuger B, et al (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5:9. https://doi.org/10.1038/srep17962

  • Miller K (1996) Piecing together the reproductive habits of New Zealand’s endemic black corals. Water Atmos 4:18–19

    Google Scholar 

  • Moeller EF (2005) Sloppy feeding in marine copepods: Prey-size-dependent production of dissolved organic carbon. J Plankton Res 27:27–35

    Article  CAS  Google Scholar 

  • Moodley L, Boschker HTS, Middelburg JJ, et al (2000) Ecological significance of benthic foraminifera: 13C labelling experiments. Mar Ecol Prog Ser 202:289–295

    Article  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthoza, Scleractinia) implications for determination of linear extension rates. Sarsia 83:433–446

    Article  Google Scholar 

  • Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 6:59–67

    Article  Google Scholar 

  • Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686

    Article  Google Scholar 

  • Moya A, Huisman L, Ball EE, et al (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454

    Article  CAS  PubMed  Google Scholar 

  • Mueller CE, Lundälv T, Middelburg JJ, et al (2013) The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One 8:1–9

    Article  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B, et al (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, et al (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    Article  CAS  PubMed  Google Scholar 

  • Naumann M, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs:1–6

    Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41

    Article  CAS  Google Scholar 

  • Olariaga A, Gori A, Orejas C, Gili JM (2009) Development of an autonomous Aquarium system for maintaining deep corals. Oceanography 22:44–45

    Article  Google Scholar 

  • Orejas C, Gili JM, López-González PJ, et al (2001) Feeding strategies and diet composition of four Antarctic cnidarian species. Pol Biol 24:620–627

    Article  Google Scholar 

  • Orejas C, Gili JM, Arntz W (2003) Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar Ecol Prog Ser 250:105–116

    Article  Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65

    Article  Google Scholar 

  • Orejas C, Gori A, Rad-Menéndez C, et al (2016) The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J Exp Mar Bio Ecol 481:34–40

    Article  Google Scholar 

  • Orejas C, Gori A, Jiménez C, et al (2017) First in situ documentation of a population of the coral Dendrophyllia ramea off Cyprus (Levantine Sea) and evidence of human impacts. Galaxea J Coral Reef Studies 19:15–16

    Google Scholar 

  • Perez FF, Fraga F (1987) A precise and rapid analytical procedure for alkalinity determination. Mar Chem 21:169–182

    Article  CAS  Google Scholar 

  • Pérez FF, Rios AF, Rellán T, et al (2000) Improvements in a fast potentiometric seawater alkalinity determination. Ciencias Mar 26:463–478

    Article  Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149

    Article  CAS  Google Scholar 

  • Purser A, Larsson AI, Thomsen L, et al (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Bio Ecol 395:55–62

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, et al (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Richter C, Wunsch M, Rasheed M, et al (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  CAS  PubMed  Google Scholar 

  • Rix L, Naumann MS, de Goeij JM, et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715 https://doi.org/10.1038/srep187151

  • Robbins LL, Hansen ME, Kleypas JA, et al (2010) CO2calc – a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): US Geological Survey Open-File Report. 2010–1280, 17 pp

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Murray F, Anagnostou E, et al (2016) Cold-water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems? In Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer, Cham, pp 53–606

    Chapter  Google Scholar 

  • Roik A, Rothig T, Roder C, et al (2015) Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity. PeerJ 3:e734

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampaio Í, Braga-Henriques A, Pham C, et al (2012) Cold-water corals landed by bottom longline fisheries in the Azores (north eastern Atlantic). J Mar Biol Assoc UK 92:1547–1555

    Article  Google Scholar 

  • Schöne BR (2008) The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28:269–285

    Article  CAS  Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28

    Article  Google Scholar 

  • Shelton GAB (1980) Lophelia pertusa (L.): Electrical conduction and behaviour in a deep-water coral. J Mar Biol Ass UK 60:517–528

    Article  Google Scholar 

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle, 670 p

    Google Scholar 

  • Strömberg SM (2016) Early life history of the cold-water coral Lophelia pertusa – with implications for dispersal. Thesis. University of Gothenburg, 53 pp. https://gupea.ub.gu.se/handle/2077/42046

  • Strömberg SM, Larsson AI (2017) Larval behavior and longevity in the cold-water coral Lophelia pertusa indicate potential for long-distance dispersal. Front Marine Sci 4(411). https://doi.org/10.3389/fmars.2017.00411

  • Strömberg SM, Östman C (2016) The cnidome and internal morphology of Lophelia pertusa (Linnaeus, 1758) (Cnidaria, Anthozoa). Acta Zool 92:191–213

    Google Scholar 

  • Tambutté E, Allemand D, Bourge I, et al (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Google Scholar 

  • Taviani M, Angeletti L, Antolini B, et al (2011) Geo-biology of Mediterranean deep-water coral ecosystems. In: Brugnoli E, Cavarretta G, et al (eds) Marine research at CNR, Dipartimento Terra e Ambiente. Consiglio Nazionale delle Ricerche, Roma, pp 705–720

    Google Scholar 

  • Tengberg A, Almroth E, Hall P (2003) Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J Exp Mar Biol Ecol 285–286:119–142

    Article  CAS  Google Scholar 

  • Tengberg A, Stahl H, Gust G, et al (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progr Oceanogr 60:1–28

    Article  Google Scholar 

  • Tsounis G, Orejas C, Reynaud S, et al (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser 398:149–155

    Article  CAS  Google Scholar 

  • Twan WH, Hwang JS, Lee YH, et al (2006) Hormones and reproduction in scleractinian corals. Comp Bioch Physiol Part A 144:247–253

    Article  CAS  Google Scholar 

  • van Duyl F, Duineveld G (2005) Biodiversity, ecosystem functioning and food web complexity of deep water coral reefs in the NE Atlantic (Rockall Bank and Porcupine Bank). Cruise report, R/V Pelagia, cruise 64PE238, 96 pp. http://www.nioznl/public/dmg/rpt/crs/64pe238pdf

  • van Duyl FC, Hegeman J, Hoogstraten A, et al (2008) Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar Ecol Prog Ser 358:137–150

    Article  CAS  Google Scholar 

  • van Oevelen D, Mueller CE, Lundalv T, et al (2016) Food selectivity and processing by the cold-water coral Lophelia pertusa. Biogeosciences 13:5789–5798

    Article  CAS  Google Scholar 

  • Vidal-Dupiol J, Zoccola D, Tambutté E, et al (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals:new insights from transcriptome analysis. PLoS One 8:e58652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinbauer M, Ogier J, Maier C (2012) Microbial abundance in the coelenteron and mucus of the cold-water coral Lophelia pertusa and in bottom water of the reef environment. Aquat Biol 16:209–216

    Article  Google Scholar 

  • White HK, Hsing P-Y, Cho W, et al (2012) Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc Nat Acad Sci 109:20303–20308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijgerde T, Spijkers P, Karruppannan E, et al (2012) Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularison a polyp and colony level. J Mar Biol 2012:1–7

    Article  Google Scholar 

  • Wild C, Mayr C, Wehrmann L, et al (2008) Organic matter release by cold water corals and its implication for fauna-microbe interaction. Mar Ecol Prog Ser 372:67–75

    Article  CAS  Google Scholar 

  • Zetsche EM, Baussant T, Meysman FJR, et al (2016) Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS One 11:1–17

    Article  CAS  Google Scholar 

Cross References

  • Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water corals

    Google Scholar 

  • Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesis

    Google Scholar 

  • Montagna P, Taviani M (this volume) Mediterranean cold-water corals as paleoclimate archives

    Google Scholar 

  • Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidification

    Google Scholar 

  • Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water corals

    Google Scholar 

  • Rossi S, Orejas C (this volume) Approaching cold-water corals to the society: novel ways to transfer knowledge

    Google Scholar 

Download references

Acknowledgements

We acknowledge the following projects for their support to these studies: FP6 HERMES (EC contract no. GOCE-CT-2005-511234), FP7 HERMIONE (Grant agreement No. 226354), CoCoNet (Contract no.287844) programmes, as well as ASSEMBLE TA project (grant agreement no. 227799), Statoil funded CORAMM project, EVER-EST Horizon 2020 project (contract no. 674907), DG Environment programme IDEM (grant agreement No 11.0661 /2017/750680/SUB/EN V.C2), Chaire ‘Extreme environment, biodiversity and global change’ (Foundation TOTAL and UPMC), CoralChange project (contract no. 231109) and the Flag Project Ritmare Ricerca Italiana per il Mare. Further projects are CYCLAMEN funded by the TOTAL foundation (BIO_2014_091_Juin_CS-8), the European Project LIFE Indemares ‘Inventario y designación de la red natura 2000 en áreas marinas del estado español’ (LIFE07/NAT/ E/000732), the Spanish Project DEEP CORAL (CTM2005-07756-C02-02/MAR) and the Acciones Complementarias (CTM2005-24174-E, CTM2006-27063-E/MAR, CTM2007-28758-E/MAR). These works has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 678760 (ATLAS) and No. 689518 (MERCES). This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein. The funds provided by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the strategic project (FCT/UID/MAR/04292/2013) granted to MARE are also acknowledged. This is ISMAR-Bologna scientific contribution n. 1940. We are very grateful to Dr. Ronald Osinga and Dr. Simonepietro Canese who thoughtfully and enthusiastically reviewed this chapter providing such insightful suggestions that would have been rightfull to make co-authors of the chapter.

Some European Research Institutes and Public Aquaria with Aquaria Facilities for Maintenance and/or Experimental Work with CWCs

  • Cyprus

  • Ocean Aquarium. P.O. Box 33845, 5318 Paralimni, Cyprus

  • France

  • Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, 66650 Banyuls-sur-mer, France

  • Germany

  • Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven

  • GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

  • Italy

  • Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy

  • Acquario di Genova, Ponte Spinola, 16128 Genova GE

  • DISVA, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy

  • Monaco

  • Centre Scientifique de Monaco, Equipe ecophysiologie corallienne, 8 Quai Antoine 1er, MC-98000 Principality of Monaco

  • Norway

  • Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway

  • Portugal

  • IMAR – Institute of Marine Research, University of the Azores, Horta, Portugal & OKEANOS – Center of the University of the Azores Horta, Portugal

  • Spain

  • Acuario do Grove, Punta Moreiras, s/n, 36988 O Grove, Pontevedra

  • Aquarium Finisterrae, Paseo Marítimo Alcalde Francisco Vázquez, 34, 15002 A Coruña, Spain

  • Institut de Ciències del Mar (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain

  • Estación de Investigación Jaume Ferrer, La Mola, 07700 Mahón, Menorca, Illes Balears, Spain

  • Sweden

  • Department of Marine Sciences, University of Gothenburg, Sweden. Field station on Tjärnö, at the west coast of Sweden and at Kristineberg. Both facilities are run by the Sven Lovén Centre for Marine Infrastructure

  • The Netherlands

  • Aquaria facilities in the Wageningen University, Department of Aquaculture and Fisheries, Pots code 338, 6700 AH Wageningen, The Netherlands

  • United Kingdom

  • School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, UK

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Covadonga Orejas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orejas, C. et al. (2019). 38 Cold-Water Coral in Aquaria: Advances and Challenges. A Focus on the Mediterranean. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_38

Download citation

Publish with us

Policies and ethics