Skip to main content

Climate Change: Warming Impacts on Marine Biodiversity

  • Chapter
  • First Online:
Handbook on Marine Environment Protection

Abstract

In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The term “biodiversity” comprises different aspects of biological differentiation. We explicitly use this term sensu lato, crossing scales from “diversity within species” (e.g, genotypic differences in a population) over “diversity between species” (e.g., number of species in a food web) to diversity at higher organisational scales (e.g., functional groups). At all these levels, biodiversity can be characterized by richness (number of entities, such as genotypes or species or functional groups), evenness (dominance structure, high evenness reflecting equal contribution of all entities to the community), and identity (taxonomic or functional characteristics [traits] of the entities).

References

  • Amarasekare P (2015) Effects of temperature on consumer-resource interactions. J Anim Ecol 84:665–679

    Article  Google Scholar 

  • Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513

    Article  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P, Loeb V, Ross RM, Quentin LB, Schmidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23

    Article  CAS  Google Scholar 

  • Balmaseda MA, Trenberth KE, Källén E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1754–1759

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Raybaud V, Goberville E, Kirby RR (2015) Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat Clim Change 5:695–701

    Google Scholar 

  • Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob Chang Biol 15:1790–1803

    Article  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694

    Article  CAS  Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664

    Article  CAS  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. doi:10.1046/j.1461-0248.2003.00432.x

    Article  Google Scholar 

  • Block BA et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90

    Article  CAS  Google Scholar 

  • Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-Méndez M, Hendricks S, Katlein C, Lalande C, Krumpen T, Nicolaus M, Peeken I, Rabe B, Rogacheva A, Rybakova E, Somavilla R, Wenzhöfer F, RV Polarstern ARK27-3-Shipboard Science Party (2013) Export of algal biomass from the melting Arctic sea ice. Science 339:1430–1432

    Article  CAS  Google Scholar 

  • Bracken MES, Low NHN (2012) Realistic losses of rare species disproportionately impact higher trophic levels. Ecol Lett 15:461–467

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Bruno JF, Harley CDG, Burrows MT (2014) Climate change and marine communities. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ, Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Burthe S et al (2012) Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar Ecol Prog Ser 454:119–133

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme el nino events due to greenhouse warming. Nature Clim. Change 4:111–116.

    Google Scholar 

  • Comiso JC (2010) Variability and trends of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Oxford, UK, pp 205–246

    Google Scholar 

  • Chase JM, Knight TM (2013) Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol Lett 16:17–26

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento JL, Kearny K, Watson R, Pauly D (2008a) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251

    Article  Google Scholar 

  • Cheung WWL, Lam VWY, Pauly D (2008b) Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. Fish Centre Res Rep 16:5–50

    Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing enviroment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  CAS  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacial fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  Google Scholar 

  • Donelson JM, Munday PL, McCormick MI, Pitcher CR (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2:30–32

    Article  Google Scholar 

  • Dornelas M et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299

    Article  CAS  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol Lett 9:215–227

    Article  Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fish 9:261–285

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Durant JM et al (2005) Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol Lett 8:952–958

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–883

    Article  CAS  Google Scholar 

  • Elahi R et al (2015) Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr Biol 25:1938–1943

    Article  CAS  Google Scholar 

  • Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A (2011) Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: the Weddell gyre as a heat buffer. Deep-Sea Res II 58:2509–2523

    Article  Google Scholar 

  • Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846

    Article  CAS  Google Scholar 

  • Fonseca CR, Ganade G (2001) Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89:118–125. doi:10.1046/j.1365-2745.2001.00528.x

    Article  Google Scholar 

  • Gilbert B, Levine JM (2013) Plant invasions and extinction debts. Proc Natl Acad Sci U S A 110:1744–1749

    Article  CAS  Google Scholar 

  • Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, Moorthi S, Sommer U, Hillebrand H (2017) Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126:8–17

    Google Scholar 

  • Guinder VA et al (2010) Long-term changes in phytoplankton phenology and community structure in the Bahia Blanca Estuary, Argentina. Mar Biol 157:2703–2716

    Article  Google Scholar 

  • Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clarke MS, Convey P, Danis B, David B, De Broyer C, di Prisco G, Griffiths H, Laffont R, Peck L, Pierrat B, Riddle MJ, Saucede T, Turner J, Verde C, Wang Z, Grimm V (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res 31:11091. doi:10.3402/polar.v31i0.11091

    Article  Google Scholar 

  • Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC (2015) The Southern Ocean ecosystem under multiple climate stresses – an integrated circumpolar assessment. Glob Chang Biol 21:1434–1453. doi:10.1111/geb.12794

    Article  Google Scholar 

  • Halpern BS, Selkoe KA, Micheli F, Kappel CV (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv Biol 12:1301–1315

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  Google Scholar 

  • Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127

    Article  CAS  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20(6):337–344

    Article  Google Scholar 

  • Hazen EL et al (2013) Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Chang 3:234–238

    Article  Google Scholar 

  • He FL, Hubbell SP (2011) Species-area relationships always overestimate extinction rates from habitat loss. Nature 473:368–371

    Article  CAS  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB (2017) Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, online early. doi:10.1111/1365-2664.12959

    Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  Google Scholar 

  • Hillebrand H, Burgmer T, Biermann E (2012) Running to stand still: temperature effects on species richness, species turnover, and functional community dynamics. Mar Biol 159:2415–2422

    Article  Google Scholar 

  • Hillebrand H, Soininen J, Snoeijs P (2010) Warming leads to higher species turnover in a coastal ecosystem. Glob Chang Biol 16:1181–1193

    Article  Google Scholar 

  • Hooper DU, Chapin Iii F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Jacob U, Thierry A, Brose U, Arntz WE, Berg S, Brey T, Fetzer I, Jonsson T, Mintenbeck K, Möllmann C, Petchey O, Riede JO, Dunne JA (2011) The role of body size in complex food webs: a cold case. Adv Ecol Res 45:182–223. doi:10.1016/B978-0-12-386475-8.00005-8

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 1–18

    Google Scholar 

  • Isla JA, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Chang Biol 14:895–906

    Article  Google Scholar 

  • Johnson KH (2000) Trophic-dynamic considerations in relating species diversity to ecosystem resilience. Biol Rev Camb Philos Soc 75:347–376

    Article  CAS  Google Scholar 

  • Jørgensen EH, Johnsen HK (2014) Rhythmic life of the Arctic charr: adaptations to life at the edge. Mar Genomics 14:71–81

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kawaguchi K, Ishikawa S, Matsuda O (1986) The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice off the Ongul Islands in Lützow-Holm Bay, Antarctica. Mem Nat Inst Polar Res Spec Iss 44:67–85

    Google Scholar 

  • Lewis OT (2006) Climate change, species–area curves and the extinction crisis. Philos Trans R Soc B Biol Sci 361:163–171

    Article  Google Scholar 

  • Litchman E, Edwards KF, Klausmeier CA, Thomas MK (2012) Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Mar Ecol Prog Ser 470:235–248

    Article  Google Scholar 

  • Llovel W, Willis JK, Landerer FW, Fukumori I (2014) Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat Clim Chang 4:1031–1035

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Google Scholar 

  • Marcus NH, Scheef LP (2010) Photoperiodism in copepods. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiods – the biological calendar. Oxford University Press, New York, pp 193–217

    Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  CAS  Google Scholar 

  • Memmott J, Martinez ND, Cohen JE (2000) Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J Anim Ecol 69:1–15

    Article  Google Scholar 

  • Meyer B (2012) The overwintering of Antarctic krill Euphausia superba, from an ecophysiological perspective − a review. Polar Biol 35:15–37

    Article  Google Scholar 

  • Mintenbeck K, Barrera-Oro ER, Brey T, Jacob U, Knust R, Mark FC, Moreira E, Strobel A, Arntz WE (2012) Impact of climate change on fishes in complex Antarctic ecosystems. Adv Ecol Res 46:351–426. doi:10.1016/B978-0-12-396992-7.00006-X

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alternation of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol 10:1973–1980

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  Google Scholar 

  • Munday P, Warner RR, Monro K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16:1488–1500

    Article  Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45

    Article  Google Scholar 

  • O’Connor MI (2009) Warming strengthens an herbivory-plant interaction. Ecology 90:388–398

    Article  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP et al (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci U S A 104:1266–1271

    Article  CAS  Google Scholar 

  • Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935

    Article  CAS  Google Scholar 

  • Parmesan C et al (2005) Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108:58–75

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Petchey OL, Eklöf A, Borrvall C, Ebenman B (2008) Trophically unique species are vulnerable to cascading extinction. Am Nat 171:568–579

    Article  Google Scholar 

  • Philippart CJM, van Aken HM, Beukema JJ, Bos OG, Cadee GC, Dekker R (2003) Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol Oceanogr 48:2171–2185

    Article  Google Scholar 

  • Poloczanska ES et al (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Pörtner H, Farrell A, Knust R et al (2009) Adapting to climate change – response. Science 323:876–877

    Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  Google Scholar 

  • Rahmsdorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentyth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Chang 5:475–480

    Article  Google Scholar 

  • Reuman DC, Holt RD, Yvon-Durocher G (2014) A metabolic perspective on competition and body size reductions with warming. J Anim Ecol 83:59–69

    Article  Google Scholar 

  • Reusch TBH (2013) Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol Appl 7:104–122

    Article  Google Scholar 

  • Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wihffels S (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Chang 5:240–245

    Article  Google Scholar 

  • Sale PF (2008) Management of coral reefs: where we have gone wrong and what we can do about it. Mar Pollut Bull 56:805–809

    Article  CAS  Google Scholar 

  • Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of coean ecosystem to climate change. Glob Biogeochem Cycles 18:GB3003. doi:10.1029/2003GB002134

    Article  CAS  Google Scholar 

  • Schofield O (2010) How do polar marine ecosystems respond to rapid climate? Science 328:1520–1523

    Article  CAS  Google Scholar 

  • Smith GR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem strcuture and climate change. Trends Ecol Evol 23:518–528

    Article  Google Scholar 

  • Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 2. Variability and relationship to sea surface height. J Geophys Res Oceans 114. doi:10.1029/2008JC005248

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1. doi:10.1186/1742-9994-2-1

    Article  Google Scholar 

  • Sommer U, Aberle N, Lengfellner K, Lewandowska A (2012) The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Mar Biol 159:2479–2490

    Article  Google Scholar 

  • Storch D, Menzel L, Frickenhaus S, Pörtner HO (2014) Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob Chang Biol 20(10):3059–3067

    Article  Google Scholar 

  • Sunagawa S et al (2015) Structure and function of the global ocean microbiome. Science 348:6237

    Article  CAS  Google Scholar 

  • Thackeray SJ et al (2010) Trophic level synchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313

    Article  Google Scholar 

  • Thomas CD et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088

    Article  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

    Article  CAS  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic climate change and the environment. SCAR, Scott Polar Research Institute, Cambridge. 526p

    Google Scholar 

  • Vargas D et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science:348. doi:10.1126/science.1261605

  • Wearn OR, Reuman DC, Ewers RM (2012) Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337:228–232

    Article  CAS  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Widdicombe C et al (2010) Long-term phytoplankton community dynamics in the Western English Channel. J Plankton Res 32:643–655

    Article  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  Google Scholar 

  • Wilson RJ, Thomas CD, Fox R, Roy DB, Kunin WE (2004) Spatial patterns in species distributions reveal biodiversity change. Nature 432:393–396

    Article  CAS  Google Scholar 

  • Woodward G, Benstead JP, Beveridge OS, Blanchard J, Brey T, Brown L, Cross WF, Friberg N, Ings TC, Jacob U, Jennings S, Ledger ME, Milner AM, Montoya JM, Pichler DE, O’Gorman E, Petchey OL, Olesen JM, Reuman DC, Thompson MS, Van Veen FJF, Yvon-Durocher G (2010) Ecological networks in a changing climate. Adv Ecol Res 42:71–138. doi:10.1016/S0065-2504(10)42002-4

    Article  Google Scholar 

  • Worm B et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  Google Scholar 

  • Xenopoulos MA, Lodge DM, Alcamo J, Marker M, Schulze K, Van Vuuren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Chang Biol 11:1557–1564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Hillebrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hillebrand, H. et al. (2018). Climate Change: Warming Impacts on Marine Biodiversity. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_18

Download citation

Publish with us

Policies and ethics