Skip to main content

Advanced Meso-Scale Modelling to Study the Effective Thermo-Mechanical Parameter in Solid Geomaterial

  • Conference paper
  • First Online:
Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS) (ATMSS 2017)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

Abstract

The effects of coupled thermo-mechanical processes under consideration of micro-fracturing of the solid geomaterial on mechanical and thermal properties of geomaterials are investigated and subsequently simulated using advance Lattice Element Method (LEM). As a result of that extension, the alteration of effective parameter due to structural changes become numerically understandable. Hence, the simulation of the coupled processes on the meso-scale helps to develop and validate reliable identification method for real cases. The obtained results make it obvious that LEM has a large potential for fracture problems in geomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahrami M, Culham JR, Yovanovich MM, Schneider GE (2006a) Review of thermal joint resistance models for non-conforming rough surfaces in a vacuum. Appl Mech Rev 59:1–12

    Article  Google Scholar 

  • Bahrami M, Yovanovich MM, Culham JR (2004) Thermal joint resistances of non-conforming rough surfaces with gas-filled gaps. J Thermophys Heat Transf 18:326–332

    Article  Google Scholar 

  • Bahrami M, Yovanovich MM, Culham JR (2006b) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701

    Article  MATH  Google Scholar 

  • Batchelor FGK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc Roy Soc Lond A 355:313–333

    Article  Google Scholar 

  • Caballero A, Carol I, Lopez CM (2006) New results in 3D meso mechanical analysis of concerete specimen using interface elements. In: Computational modelling of concrete structure, pp 43-52. Taylor and Francis, London

    Google Scholar 

  • Cheng GJ, Yu AB, Zulli P (1999) Evaluation of effective thermal conductivity from the structure of a packed bed. Chem Eng Sci 54:4199–4209

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens T.J. (ed.) Rock physics & phase relations: a handbook of physical constants. Americ. Geophysical Union

    Google Scholar 

  • D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Gran Matter 4:77–90

    Article  MATH  Google Scholar 

  • Donze FV, Magnier SA, Daudeville L, Mariotti C (1999) Numerical study of compressive behaviour of concrete at high strain rates. J Eng Mech 125:1154–1163

    Article  Google Scholar 

  • Esteban L, Pimienta L, Sarout J, Piane CP, Haffen S, Geraud Y, Timms NE (2015) Study cases of thermal conductivity prediction from p-wave velocity and porosity. Geothermics 53:255–269

    Article  Google Scholar 

  • Gegenhuber N, Schön JH (2012) New approaches for the relationship between compressional wave velocity and thermal conductivity. J Appl Geophys 76:50–55

    Article  Google Scholar 

  • Kuipers J, van Duin K, van Beckum F, van Swaaij W (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47:1913–1924

    Article  Google Scholar 

  • Lawn BR (1993) Fracture of Brittle Solids, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941

    Article  Google Scholar 

  • Moukarzel C, Herrmann HJ (1992) A vectorizable random lattice. J Stat Phys 68:911–923

    Article  MathSciNet  MATH  Google Scholar 

  • Rizvi ZH, Sattari AS, Wuttke F (2016) Numerical analysis of heat conduction in granular geomaterial using lattice elements. In: 1st international conference on energy geotechnics, Kiel, Germany

    Google Scholar 

  • Schön JH (2011) Physical properties of rocks: a workbook. Elsevier publication, Oxford

    Google Scholar 

  • Tavman S, Tavman IH (1998) Measurement of effective thermal conductivity of wheat as a function of moisture contact. Int Commun J HeatMass Transf 25:733–741

    Article  Google Scholar 

  • Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of 2D fluidized bed. Powder Technol 77:79–87

    Article  Google Scholar 

  • Woodside W, Messmer JH (1961) Thermal conductivity of porous media I unconsolidated sands. J Appl Phys 32:1688–1698

    Article  Google Scholar 

  • Wang YH, Leung SC (2008) A particulate scale investigation of cemented sand behaviour. Can Geotech 45:29–44

    Article  Google Scholar 

  • Wong JKW, Soga K, Xu X, Delenne JY (2015) Modelling fracturing process of geomaterial using Lattice Element Method. In: Geomechanics from micro to macro, pp. 417–422

    Google Scholar 

  • Yun TS, Matthew Evans T (2010) Three-dimensional random network model for thermal conductivity in particulate materials. Comput Geotech 37:991–998

    Article  Google Scholar 

  • Zhang HW, Zhou Q, Zheng YG (2011a) A multi-scale method for thermal conduction simulation in granular materials. Comput Mat Sci 50:2750–2758

    Article  Google Scholar 

  • Zhang HW, Zhou Q, Xing HL, Muhlhaus H (2011b) A DEM study on the effective thermal conductivity of granular assemblies. Powder Technol 205:172–183

    Article  Google Scholar 

  • Zhou Q, Zhang HW, Zheng YG (2012) A homogenization technique is proposed to simulate the thermal conduction of periodic granular materials in vacuum. Adv Powder Technol 23:104–114

    Article  Google Scholar 

Download references

Acknowledgment

This research project is financially supported by Federal state funding at Kiel University and research grant “DuoFill” provided by the Federal Ministry for Economic Affairs and Energy, Germany (BMWi/ZIM KF3067303KI3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wuttke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wuttke, F., Sattari, A.S., Rizvi, Z.H., Motra, H.B. (2017). Advanced Meso-Scale Modelling to Study the Effective Thermo-Mechanical Parameter in Solid Geomaterial. In: Ferrari, A., Laloui, L. (eds) Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS). ATMSS 2017. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-52773-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52773-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52772-7

  • Online ISBN: 978-3-319-52773-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics