Skip to main content

New Zealand’s Gas Hydrate Systems

  • Chapter
  • First Online:
World Atlas of Submarine Gas Hydrates in Continental Margins

Abstract

New Zealand’s large offshore region is dominated by the collision of the Pacific and Australian Plates. Gas hydrates have been identified in three areas: the Hikurangi Margin, the Taranaki and Northland Basins, and the Fiordland-Puysegur Margin. The Hikurangi Margin subduction margin to the east of the North Island stands out, displaying numerous indications of highly-concentrated gas hydrate occurrences. This subduction zone constitutes an environment with high fluid flow and rapidly changing pressure–temperature conditions, leading to anomalies such as the occurrence of double-bottom simulating reflections (BSRs). The Taranaki and Northland Basins west of the North Island is New Zealand’s most prominent petroleum province. So far, however, only limited evidence for hydrate occurrence has been found there. BSRs have also been detected south of the South Island along the Fiordland-Puysegur Margin, an incipient subduction zone. It is likely that gas hydrates are present elsewhere along New Zealand’s vast continental margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashi J, Tokuyama H, Taira A (2002) Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Mar Geol 187:177–191

    Article  Google Scholar 

  • Bai H, Pecher IA, Adam L et al (2016) Possible link between weak bottom simulating reflections and gas hydrate systems in fractures and macropores of fine-grained sediments: Results from the Hikurangi Margin, New Zealand. Mar Pet Geol 71:225–237

    Article  Google Scholar 

  • Ballance PF (1976) Evolution of the Upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth Planet Sci Lett 28:356–370

    Article  Google Scholar 

  • Barker DHN, Sutherland R, Henrys S et al (2009) Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochem Geophys 10(2):Q02007

    Google Scholar 

  • Barnes PM, Mercier de Lepinay B (1997) Rates and mechanics of rapid frontal acrretion along the very obliquely converget southern Hikurangi margin, New Zealand. J Geophys Res 102:24931–24952

    Article  Google Scholar 

  • Barnes PM, Lamarche G, Bialas J et al (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi Subduction Margin, New Zealand. Mar Geol 272(1–4):26–48

    Article  Google Scholar 

  • Barnes PM, Mercier de Lepinay B, Collot J-Y et al (1998) Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics 17:534–557

    Google Scholar 

  • Barnes PM, Pecher IA, LeVay LJ et al (2019) Expedition 372A summary. In: Pecher IA, Barnes PM, LeVay LJ et al (eds) Creeping gas hydrate slides. Proceedings of the International Ocean Discovery Program, volume 372A. International Ocean Discovery Program, College Station, TX

    Google Scholar 

  • Bell R, Sutherland R, Barker DHN et al (2010) Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys J Int 180:34–48

    Article  Google Scholar 

  • Bell RF, Sutherland R, Barker DHN et al (2010) Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys J Int 180(1):34–48

    Article  Google Scholar 

  • Bell R, Holden C, Power W et al (2014) Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. Earth Planet Sci Lett 307:1–9

    Article  Google Scholar 

  • Bialas J, Klaucke I, Mögeltönder J (2013) FS Sonne Fahrtbericht/Cruise report SO 226 CHRIMP, vol 7. GEOMAR, Kiel, p 124

    Google Scholar 

  • Coffin RB, Hamdan L, Smith JP et al (2013) Spatial variation in shallow sediment methane source and cycling along the Alaskan Beaufort Sea. Mar Petrol Geol 45:186–197

    Article  Google Scholar 

  • Coffin RB, Rose PR, Yosa B et al (2013b) Geochemical evaluation of climate change on the Chatham Rise: NRL/MR/6110--13-9472, US Naval Research Laboratory, Washington, DC, p 81

    Google Scholar 

  • Collot J-Y, Lewis KB, Lamarche G et al (2001) The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand; results of oblique seamount subduction. J Geophys Res 106:19271–19297

    Article  Google Scholar 

  • Cook A, Paganoni M, McNamara D et al (2020) Physical properties and gas hydrate at a near-seafloor thrust fault, Hikurangi Margin, New Zealand. Geophys Res Lett 47(16):p.e2020GL088474

    Google Scholar 

  • Crutchley GJ, Gorman AR, Fohrmann M (2007) Investigation of the role of gas hydrates in continental slope stability west of Fiordland, New Zealand. NZ J Geol Geophys 50(4):357–364

    Article  Google Scholar 

  • Crutchley GJ, Geiger S, Pecher IA et al (2010) The potential influence of shallow gas and gas hydrates on seafloor erosion of Rock Garden, an uplifted ridge offshore of New Zealand. Geo Mar Lett 30(3–4):283–303

    Article  Google Scholar 

  • Crutchley GJ, Kroeger KF, Pecher IA et al (2017) Gas hydrate formation amid submarine canyon incision: investigations from New Zealand’s Hikurangi Subduction Margin. Geochem Geophys 18:4299–4316

    Article  Google Scholar 

  • Crutchley GJ, Kroeger KF, Pecher IA et al (2019) How tectonic folding influences gas hydrate formation: New Zealand’s Hikurangi subduction margin. Geology 47:39–42

    Article  Google Scholar 

  • Crutchley GJ, Fraser DRA, Pecher IA et al (2015) Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand. J Geophys Res 120:725–743

    Google Scholar 

  • Crutchley G, Maslen G, Pecher I et al (2016a) High-resolution seismic velocity analysis as a tool for exploring gas hydrate systems: an example from New Zealand’s southern Hikurangi Margin, Interpretation. Interpretation 4:SA1–SA12

    Google Scholar 

  • Crutchley GJ, Mountjoy JJ, Pecher IA et al (2016b) Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples. In: Lamarche G et al (eds) Submarine mass movements and their consequences, vol 41. Springer, pp 401–406

    Google Scholar 

  • Davy B, Pecher IA, Wood R et al (2010) Gas escape features off New Zealand—evidence for a massive release of methane from hydrates? Geophys Res Lett 37:L21309

    Article  Google Scholar 

  • Davy B (2014) Rotation and offset of the Gondwana convergent margin in the New Zealand region following Cretaceous jamming of Hikurangi Plateau large igneous province subduction. Tectonics 33:1577–1595

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF et al (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194

    Article  Google Scholar 

  • Ellis S, Pecher IA, Kukowski N et al (2010) Testing proposed mechanisms for seafloor weakening at the top of gas hydrate stability, Rock Garden, New Zealand. Mar Geol 272:127–140

    Article  Google Scholar 

  • Ellis S, Fagereng A, Barker D et al (2015) Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure. Geophys J Int 202:277–297

    Article  Google Scholar 

  • Fohrmann M, Gorman AR, Pecher IA (2009) Seismic characterization of the Fiordland gas hydrate province. In: Collet T, Johnson A, Knapp C et al (eds) Natural gas hydrates: energy resource potential and associated geologic hazards, vol 89. AAPG Memoir, pp 467–480

    Google Scholar 

  • Fohrmann M, Pecher IA (2012) Analysing sand-dominated channel systems for potential gas-hydrate-reservoirs using an AVO seismic inversion technique on the Southern Hikurangi Margin, New Zealand. Mar Petrol Geol 38:19–34

    Article  Google Scholar 

  • Fraser DRA, Gorman AR, Pecher IA et al (2016) Gas hydrate accumulations related to focused fluid flow in the Pegasus Basin, southern Hikurangi Margin, New Zealand. Mar Petrol Geol 77:399–408

    Article  Google Scholar 

  • FUGRO Marine Geoservices (2015) PEP 57083, PEP 57085, PEP 57087 integrated final report: geophysical, geochemical and heat flow survey 2015. New Zealand Petroleum and Minerals, Ministry of Business, Innovation & Employment, Wellington, New Zealand

    Google Scholar 

  • Goto S, Matsubayashi O, Nagakubo S (2016) Simulation of gas hydrate dissociation caused by repeated tectonic uplift events. J Geophys Res Solid Earth 121:3200–3219

    Article  Google Scholar 

  • Greinert J, Lewis KB, Bialas J et al (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272(1–4):6–25

    Article  Google Scholar 

  • Gross F, Mountjoy J, Crutchley G et al (2018) Deformation and free gas accumulation in an active submarine landslide. The Tuaheni Landslide Complex, New Zealand. Earth Planet Sci Lett 502:231–243

    Article  Google Scholar 

  • Gurnis M (1992) Rapid continental subsidence following the initiation and evolution of subduction. Science 255:1556–1558

    Article  Google Scholar 

  • Hillman JIT, Crutchley GJ, Kroeger KF (2020) Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand. Mar Geophys Res 41:8

    Article  Google Scholar 

  • Katz HR (1981) Probable gas hydrate in continental slope east of the North Island, New Zealand. J Petrol Geol 3:315–324

    Article  Google Scholar 

  • Katz HR (1982) Evidence of gas hydrates beneath the continental slope, East Coast, North Island, New Zealand. NZ J Geol Geophys 25:193–199

    Article  Google Scholar 

  • Katz BJ (2011) Microbial processes and natural gas accumulations. Open Geol J 5:75–83

    Article  Google Scholar 

  • Kroeger KF, Crutchley GJ, Hill MG et al (2017) Potential for gas hydrate formation at the northwest New Zealand shelf margin—new insights from seismic reflection data and petroleum systems modelling. Mar Pet Geol 83:215–230

    Article  Google Scholar 

  • Kroeger KF, Crutchley GJ, Kellett R et al (2019) A 3-D model of gas generation, migration, and gas hydrate formation at a young convergent margin (Hikurangi Margin, New Zealand). Geochem Geophys 20(11):5126–5147

    Article  Google Scholar 

  • Kroeger K, Plaza-Faverola A, Barnes P et al (2015) Thermal evolution of the New Zealand Hikurangi subduction margin: impact on natural gas generation and methane hydrate formation—a model study. Mar Pet Geol 63:97–114

    Google Scholar 

  • Lewis KB, Pettinga JR (1993) The emerging imbricate frontal wedge of the Hikurangi margin. In: Balance PF (ed) South Pacific sedimentary basins. Elsevier, Amsterdam, pp 225–250

    Google Scholar 

  • Macnaughtan MT (2019) A seismic analysis of BSR controls in the Pegasus Basin. MSc, University of Auckland, New Zealand, p 107

    Google Scholar 

  • Mitchell JS, Mackay KA, Neil HL et al (2012) Undersea New Zealand, 1:5,000,000. NIWA, Wellington, New Zealand, p NIWA Chart

    Google Scholar 

  • Mortimer N, Smith Lyttle B, Black J (2020) Te Riu-a-Māui/Zealandia digital geoscience data compilation, scale 1:8,500,000. In: Map GSG (ed) Lower Hutt, New Zealand, GNS Science

    Google Scholar 

  • Mountjoy JJ, McKean J, Barnes PM et al (2009) Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex. Mar Geol 267(3–4):114–127

    Article  Google Scholar 

  • Mountjoy JJ, Pecher I, Henrys S et al (2014) Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand. Geochem Geophys 15(11):4137–4156

    Article  Google Scholar 

  • Navalpakam RS, Pecher IA, Stern T (2012) Weak and segmented bottom simulating reflections on the Hikurangi Margin, New Zealand—implications for gas hydrate reservoir rocks. J Pet Sci Eng 88–89:29–40

    Article  Google Scholar 

  • Ogebule OY, Pecher IA (2010) Possible gas hydrates in the Northland and northern Taranaki Basins—indirect evidence from seismic data. NZ J Geol Geophys 53(4):369–373

    Article  Google Scholar 

  • Paganoni M, Cartwright JA, Foschi M et al (2016) Structure II gas hydrates found below the bottom simulating reflector. Geophys Res Lett 43:5696–5706

    Article  Google Scholar 

  • Pecher IA, Minshull TA, Singh SC et al (1996) Velocity structure of a bottom simulating reflector offshore Peru: results from full waveform inversion. Earth Planet Sci Lett 139:459–469

    Article  Google Scholar 

  • Pecher IA, Henrys SA, Ellis S et al (2005) Erosion of the seafloor at the top of the gas hydrate stability zone on the Hikurangi Margin, New Zealand. Geophys Res Lett 32:L24603

    Article  Google Scholar 

  • Pecher IA, Henrys SA, Kukowski N et al (2010) Focussing of fluid expulsion on the Hikurangi margin, New Zealand, based on evidence for free gas in the regional gas hydrate stability zone. Mar Geol 272:99–113

    Article  Google Scholar 

  • Pecher IA, Villinger H, Kaul N et al (2017) A fluid pulse on the Hikurangi Subduction Margin: evidence from a heat hlux transect across the upper limit of gas hydrate stability. Geophys Res Lett 44(24):12385–12395

    Article  Google Scholar 

  • Pecher I, Ogebule O, Nwanememma O (2011) Possible gas hydrates in the Northland and Taranaki Basins, New Zealand—evidence from seismic data: high-resolution processing and AVO analysis. In: Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, UK, p 8

    Google Scholar 

  • Pecher IA, Barnes PM, LeVay LJ et al (2018) Expedition 372 Preliminary Report: Creeping gas hydrate slides and Hikurangi LWD. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.372.2018

  • Plaza-Faverola A, Klaeschen D, Barnes P et al (2012) Evolution of fluid expulsion and controls on hydrate formation across the southern Hikurangi subduction Margin, New Zealand. Geochem Geophys 13(8):Q08018

    Google Scholar 

  • Plaza-Faverola A, Henrys S, Pecher I et al (2016) Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow. Geochem Geophys 17:5009–5023

    Article  Google Scholar 

  • Rajan A, Buenz S, Mienert J et al (2013) Gas hydrate systems in petroleum provinces of the SW-Barents Sea. Mar Pet Geol 46:92–106

    Article  Google Scholar 

  • Schwalenberg K, Haeckel M, Poort J et al (2010a) Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272:79–88

    Article  Google Scholar 

  • Schwalenberg K, Wood WT, Pecher IA et al (2010b) Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand. Mar Geol 272:89–98

    Article  Google Scholar 

  • Schwalenberg K, Rippe D, Koch S et al (2017) Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J Geophys Res Solid Earth 122(5):3334–3350

    Article  Google Scholar 

  • Screaton EJ, Torres ME, Dugan B et al (2019) Sedimentation controls on methane-hydrate dynamics across glacial/interglacial stages: an example from international ocean discovery program site U1517, Hikurangi Margin. Geochem Geophys 20(11):4906–4921

    Article  Google Scholar 

  • Townend J (1997) Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi margin and southwest Fiordland, New Zealand. Mar Geol 141:209–220

    Article  Google Scholar 

  • Turco F, Crutchley G, Gorman A et al (2020) Seismic velocity and reflectivity analysis of concentrated gas hydrate deposits on the southern Hikurangi Margin (New Zealand). Mar Pet Geol 120:104572

    Google Scholar 

  • Wallace LM, Beavan J (2010) Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J Geophys Res 114:B12402

    Article  Google Scholar 

  • Wallace LM, Beavan J, Bannister S et al (2012) Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration. J Geophys Res 117(B11):B11402

    Google Scholar 

  • Wallace LM, Saffer DM, Barnes PM et al (2019) Hikurangi subduction margin coring, logging, and observatories. In: Proceedings of the International Ocean Discovery Program, volume 372B/375. International Ocean Discovery Program, College Station, TX

    Google Scholar 

Download references

Acknowledgements

Several New Zealand, German, US and other international funding agencies have supported the research presented here; most recently, the New Zealand Ministry of Business, Innovation and Employment (MBIE) contract C05X1708, and the Royal Society of New Zealand Marsden Fund Grant NIW1603. GNS Science and NIWA also contributed internal funding (NIWA SSIF). We acknowledge the invaluable support provided by the International Ocean Discovery Program, as well as the captains and crews of R/V Tangaroa, R/V Sonne and D/V JOIDES Resolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Pecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pecher, I. et al. (2022). New Zealand’s Gas Hydrate Systems. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_35

Download citation

Publish with us

Policies and ethics