Skip to main content

Geophysics

  • Chapter
  • First Online:
Glaciers and Ice Sheets in the Climate System
  • 1623 Accesses

Abstract

This chapter describes geophysical methods used to probe the interior of ice sheets and glaciers, focussing on active seismics and radar measurements. Their physical principles, data acquisition and processing, and the interpretation of internal reflectors from seismic or radar data, are explained. The chapter goes on to describe the glaciological applications of these methods, including the mapping of ice thickness, bed topography, subglacial properties and the internal stratigraphy within ice masses. Additional sections present an overview of passive methods (gravimetry, magnetics, seismology) and detail the mathematics of seismic and electromagnetic wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The acronyms have the following meaning: CHAMP, Challenging Mini-satellite Payload; GRACE: Gravity Recovery and Climate Experiment; GOCE: Gravity field and steady-state Ocean Circulation Explorer.

  2. 2.

    As its name suggests, impedance is a measure of the resistance of the medium. In an electrical circuit, the resistance is the voltage divided by the current; in a uni-directional fluid flow such as in a river, we might define it as the hydraulic head divided by the velocity. Impedance generalises this idea to alternating currents where there is no net flow or current. Further detail is given in Sects. 14.3.1 and 14.7.

  3. 3.

    Other terms are also used, such as LPO (lattice preferred orientation).  An individual ice crystal has considerable anisotropic properties [rheology, thermal conductance, seismic and electromagnetic wave speed (Table 14.1)]. The overall properties of the bulk medium depend on the orientation of the individual crystals within the bulk, e. g., whether they are randomly orientated (isotropic) or have a preferred (anisotropic) orientation.

  4. 4.

    A streamer is a linear array of geophones towed along the ground or through the water.

  5. 5.

    We use the notation \(d\mathbf{s}=ds_1\,ds_2\,ds_3\) to denote volume elements.

  6. 6.

    In reference to Galileo’s Pisa experiment on the fall of two spheres of unequal mass.

  7. 7.

    That is, an ellipse rotated about its minor axis.

  8. 8.

    Impedance is a measure of resistance to motion. For sound waves it can be defined as the ratio of pressure perturbation to velocity perturbation. Since, from (14.17), with \(\mathbf{u}\) and \(\rho \propto e^{i(\mathbf{k}.\mathbf{r}-\omega t)}\), \(\rho _0\mathbf{u}_t=-i\omega \rho _0\mathbf{u}=-c^2{\varvec{\nabla }}\rho =-i\rho c^2\mathbf{k}\), and the pressure perturbation \(\phi =\rho c^2\), and \(c=\omega /k\), it follows that \(\phi /u=\rho _0c\).

  9. 9.

    The symbol ‘\(\sim \)’ is used rather than ‘\(=\)’ because the approximation is asymptotic rather than convergent.

  10. 10.

    The strain at a point of an elastic material is its displacement from its position of equilibrium.

References

  1. Riedel S, Jokat W (2007) A compilation of new airborne magnetic and gravity data across Dronning Maud Land, Antarctica. Tech. Rep., U. S. Geological Survey and The National Academies, USGS OF-2007-1047, extended abstract 149. At https://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea149.pdf

  2. Röthlisberger H (1955) Studies on glacier physics on the Penny Ice Cap, Baffin Island, 1953: part III: seismic soundings. J Glaciol 2:539–552

    Google Scholar 

  3. Crary AP (1955) A brief study of ice tremors. Bull Seismol Soc Am 45(1):1–9

    Google Scholar 

  4. Podolskiy EA, Walter F (2016) Cryoseismology. Rev Geophys 54:708–758

    Article  Google Scholar 

  5. Yilmaz Ö (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists, Tulsa

    Book  Google Scholar 

  6. Ulaby FT, Moore RK, Fung AK (1981/1982) Microwave remote sensing (2 vols.). Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  7. Aki K, Richards PG (1980) Quantitative seismology, theory and methods. W. H. Freeman, San Francisco

    Google Scholar 

  8. Peters ME, Blankenship DD, Morse DL (2005) Analysis techniques for coherent airborne radar sounding: application to West Antarctic ice streams. J Geophys Res 110:B06303

    Google Scholar 

  9. Booth AD, Clark RA, Kulessa B, Murray T, Carter J, Doyle S, Hubbard A (2012) Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland. The Cryosphere 6(4):909–922

    Google Scholar 

  10. van der Kruk, J (2002) Reflection seismics. Lecture notes, eth-25462-01, ETH Zürich. https://doi.org/10.3929/ethz-a-004363847

  11. Bamber JL and 10 others (2013) A new bed elevation dataset for Greenland. The Cryosphere 7:499–510

    Google Scholar 

  12. Fretwell P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7:375–393

    Google Scholar 

  13. Morlighem M and 31 others (2017) BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophys Res Lett 44:11051–11061

    Google Scholar 

  14. Morlighem M and 36 others (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat Geosci 13:132–137

    Google Scholar 

  15. King EC, Woodward J, Smith AM (2007) Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica. J Glaciol 53:665–672

    Google Scholar 

  16. Peters LE, Anandakrishnan S, Alley RB, Winberry JP, Voigt DE, Smith AM, Morse DL (2006) Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West Antarctica. J Geophys Res 111:B01302

    Google Scholar 

  17. Blankenship DD, Bentley CR, Rooney ST, Alley RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322(6074):54–57

    Article  Google Scholar 

  18. Anandakrishnan S (2003) Dilatant till layer near the onset of streaming flow of Ice Stream C, West Antarctica, determined by AVO (amplitude vs offset) analysis. Ann Glaciol 36:283–286

    Article  Google Scholar 

  19. Peters LE, Anandakrishnan S (2007) Subglacial conditions at a sticky spot along Kamb Ice Stream, West Antarctica. Tech. Rep., U. S. Geological Survey and The National Academies, USGS OF-2007-1047

    Google Scholar 

  20. King EC, Jarvis EP (2007) Use of shear waves to measure Poisson’s ratio in polar firn. J Environ Eng Geophys 12(1):15–21

    Article  Google Scholar 

  21. Horgan HJ, Anandakrishnan S, Alley RB, Peters LE, Tsoflias GP, Voigt DE, Winberry JP (2008) Complex fabric development revealed by englacial seismic reflectivity: Jakobshavn Isbræ, Greenland. Geophys Res Lett 35(10):L10501

    Google Scholar 

  22. Peters LE, Anandakrishnan S, Alley RB, Voigt DE (2012) Seismic attenuation in glacial ice: a proxy for englacial temperature. J Geophys Res 117(F2):F02008

    Google Scholar 

  23. Siegert MJ, Welch B, Morse D, Vieli A, Blankenship DD, Joughin I, King EC, Leysinger-Vieli GJ-MC, Payne AJ, Jacobel R (2004) Ice flow direction change in the interior of West Antarctica. Science 305(5692):1948–1951

    Google Scholar 

  24. Bogorodsky VV, Bentley CR, Gudmandsen PE (1985) Radioglaciology. Reidel, Dordrecht

    Book  Google Scholar 

  25. Eisen O and 15 others (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Revs Geophys 46:RG2001

    Google Scholar 

  26. Waddington ED, Neumann TA, Koutnik MR, Marshall H-P, Morse DL (2007) Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets. J Glaciol 53(183):694–712

    Article  Google Scholar 

  27. Leysinger-Vieli GJ-MC, Hindmarsh RCA, Siegert MJ (2007) Three-dimensional flow influences on radar layer stratigraphy. Ann Glaciol 46:22–28

    Article  Google Scholar 

  28. Gillet-Chaulet F, Hindmarsh RCA (2011) Flow at ice-divide triple junctions: 1. Three-dimensional full-Stokes modeling. J Geophys Res 116(F2):F02023

    Google Scholar 

  29. Drews R, Martín C, Steinhage D, Eisen O (2013) Characterization of glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica. J Glaciol 59(213):9–20

    Google Scholar 

  30. Martín C, Gudmundsson GH, Pritchard HD, Gagliardini O (2009) On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides. J Geophys Res 114:F04001

    Google Scholar 

  31. Carter SP, Blankenship DD, Young DA, Holt JW (2009) Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica. J Glaciol 55:1025–1040

    Google Scholar 

  32. Drews R, Eisen O, Weikusat I, Kipfstuhl S, Lambrecht A, Steinhage D, Wilhelms F, Miller H (2009) Layer disturbances and the radio-echo free zone in ice sheets. The Cryosphere 3(2):195–203

    Google Scholar 

  33. Bell RE and 11 others (2011) Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science 331(6024):1592–1595

    Google Scholar 

  34. Petterson R, Jansson P, Holmlund P (2003) Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys. J Geophys Res 108(F1):6004

    Google Scholar 

  35. Eisen O, Bauder A, Riesen P, Funk M (2009) Deducing temperature distribution in the tongue of Gornergletscher, Switzerland, from radar surveys. Ann Glaciol 50:63–70

    Article  Google Scholar 

  36. Brandt O (2007) Application of GPR as a tool for cryosphere characterizations. Ph. D. thesis, University of Oslo

    Google Scholar 

  37. Robinson ES, Coruh C (1988) Basic exploration geophysics. Wiley, Chichester

    Google Scholar 

  38. Burger HR, Sheehan AF, Jones CH (2006) Introduction to applied geophysics: exploring the shallow subsurface. W. W. Norton and Company, New York

    Google Scholar 

  39. Hecht E (2001) Optics, 4th edn. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  40. Jackson JD (1998) Classical electrodynamics. Wiley, Chichester

    Google Scholar 

  41. Daniels DJ (1996) Surface-penetrating radar, vol 6 of Radar, Sonar, Navigation and Avionics Series. IEE

    Google Scholar 

  42. Hubbard B, Glasser N (2005) Field techniques in glaciology and glacial geomorphology. Wiley, Chichester

    Google Scholar 

  43. Dowdeswell JA, Hodgkins R, Nuttall A-M, Hagen JO, Hamilton GS (1995) Mass balance changes as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys Res Lett 22(21):2909–2912

    Google Scholar 

  44. Navarro FJ, Eisen O (2010) Ground-penetrating radar. In: Pellikka P, Rees WG (eds.) Remote sensing of glaciers: techniques for topographic, spatial and thematic mapping. Taylor and Francis, London, pp 195–229

    Google Scholar 

  45. Looyenga H (1965) Dielectric constant of heterogeneous mixtures. Physica 31(3):401–406

    Article  Google Scholar 

  46. Robin GdeQ, Evans S, Bailey JT (1969) Interpretation of radio echo sounding in polar ice sheets. Phil Trans R Soc Lond A 146:437–505

    Google Scholar 

  47. Kovacs A, Gow AJ, Morey RM (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg Sci Technol 23:245–256

    Article  Google Scholar 

  48. Paren JG (1981) PRC at a dielectric interface. J Glaciol 27(95):203–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Eisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eisen, O. (2021). Geophysics. In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_14

Download citation

Publish with us

Policies and ethics