Skip to main content

Carbon Balance Under a Changing Light Environment

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

The natural environment of Antarctic seaweeds is characterized by changing seasonal light conditions. The ability to adapt to this light regime is one of the most important prerequisites for their ecological success. Thus, the persistence of seaweeds depends on their capacity to maintain a positive carbon balance (CB) for buildup of biomass over the course of the year. A positive CB in Antarctica occurs only during the ice-free period in spring and summer, when photosynthetically active radiation (PAR, 400–700 nm) penetrates deeply into the water column. The accumulated carbon compounds during this period are stored and remobilized to support metabolism for the rest of the year.

Over the last decades climate warming has induced a severe glacial retreat in Antarctica and has opened newly ice-free areas. Increased sediment runoff, and reduced light penetration due to melting during the warmer months, may lead to a negative CB with changes in the vertical distribution of seaweeds. Furthermore, warmer winters and springs result in earlier sea-ice melt, causing an abrupt increase in light, compensating the reduction in PAR in summer or increasing the annual light budget. Studies performed in Potter Cove, Isla 25 de Mayo/King George Island, reveal that algae growing in newly ice-free areas did not acclimate to the changing light conditions. Lower or even negative CB values in areas close to the glacier runoff seem to be primarily dependent on the incoming PAR that finally determines the lower distribution limit of seaweeds. The present chapter discusses how carbon balance respond to the changing Antarctic light environment and its potential implications for the fate of benthic algal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. In: Atkinson RJA, Gibson RN (eds) Oceanogr Mar Biol Ann Rev. CRC Press, London, pp 161–236

    Google Scholar 

  • Anthony KRN, Ridd PV, Orpin AR, Larcombe P, Lough J (2004) Temporal variation in light availability in coastal benthic habitats: effects of clouds, turbidity, and tides. Limnol Oceanogr 49:2201–2211. https://doi.org/10.4319/lo.2004.49.6.2201

    Article  Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc Lond Ser B Biol Sci 362(1477):11e38. https://doi.org/10.1098/rstb.2006.1951

    Article  Google Scholar 

  • Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 1:1–4. https://doi.org/10.1038/nclimate1232

    Article  Google Scholar 

  • Barnes DKA, Fenton M, Cordingley A (2014) Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Curr Biol 24(12):R553–R554. https://doi.org/10.1016/j.cub.2014.04.040

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA, Fleming A, Sands CJ, Quartino ML, Deregibus D (2018) Icebergs, blue carbon and Antarctic climate feedbacks. Philos Trans A Math Phys Eng Sci 376(2122):20170176. https://doi.org/10.1098/rsta.2017.0176

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036. https://doi.org/10.1007/s00300-015-1870-1

    Article  Google Scholar 

  • Becker S, Quartino ML, Campana GL, Bucolo P (2011) The biology of an Antarctic rhodophyte, Palmaria decipiens: recent advances. Antarct Sci 23(5):419–430. https://doi.org/10.1017/S0954102011000575

    Article  Google Scholar 

  • Bers AV, Momo F, Schloss IR, Abele D (2013) Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response. Clim Chang 116(34):789–803

    Article  Google Scholar 

  • Campana GL, Zacher K, Fricke A, Molis M, Wulff A, Quartino ML, Wiencke C (2009) Drivers of colonization and succession in polar benthic macro- and microalgal communities. Bot Mar 52:655–667. https://doi.org/10.1515/BOT.2009.076

    Article  Google Scholar 

  • Campana GL, Zacher K, Deregibus D, Momo F, Wiencke C, Quartino ML (2018) Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): structural patterns and glacial impact over a four-year period. Polar Biol 41(2):377–396

    Article  Google Scholar 

  • Clark GF, Stark JS, Johnston EL (2013) Light-driven tipping points in polar ecosystems. Glob Chang Biol 12:3749–3761. https://doi.org/10.1111/gcb.12337

    Article  Google Scholar 

  • Clark GF, Stark JS, Palmer AS, Riddle MJ, Johnston EL (2017) The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS One 12(1):e0168391. https://doi.org/10.1371/journal.pone.0168391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constable AJ, Melbourne -Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DK, Bindoff NL et al (2014) Climate change and Southern Ocean ecosystems. I: How changes in physical habitats directly affect marine biota. Glob Chang Biol 20:3004–3025. https://doi.org/10.1111/gcb.12623

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308(5721):541–544

    Article  CAS  Google Scholar 

  • Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep Sea Res Part A 37:667–683. https://doi.org/10.1016/0198-0149(90)90097-F

    Article  CAS  Google Scholar 

  • Dennison WC, Alberte RS (1985) Role of daily light period in the depth distribution of Zostera manna (eelgrass). Mar Ecol Prog Ser 25:51–61

    Article  Google Scholar 

  • Deregibus D (2017) Efecto del retroceso glaciario inducido por el cambio climático sobre la comunidad de macroalgas en nuevas áreas libres de hielo en un ecosistema costero antártico (Caleta Potter, I.25 de Mayo, I. Shetland del Sur). PhD thesis, Universidad de Buenos Aires. http://hdl.handle.net/20.500.12110/tesis_n6241_Deregibus

  • Deregibus D, Quartino ML, Campana GL, Momo F, Wiencke C, Zacher K (2016) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39:153–166. https://doi.org/10.1007/s00300-015-1679-y

    Article  Google Scholar 

  • Deregibus D, Quartino ML, Zacher K, Campana GL, Barnes D (2017) Understanding the link between sea ice, ice scour and Antarctic benthic biodiversity; the need for cross station and nation collaboration. Polar Rec 53:143–152. https://doi.org/10.1017/S0032247416000875

    Article  Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31:262–277

    Article  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sévrine F et al (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26(3):190–203. https://doi.org/10.5670/oceanog.2013.62

    Article  Google Scholar 

  • Falk U, Sala H (2016) Winter melt conditions of the inland ice cap on King George Island, Antarctic Peninsula. Erdkunde 341–363. https://doi.org/10.3112/erdkunde.2015.04.04

  • Falkowski PG, Raven JA (eds) (1997) Aquatic photosynthesis. Blackwell Scientific, Oxford

    Google Scholar 

  • Ferron FA, Simões JC, Aquino FE, Setzer AW (2004) Air temperature time series for King George Island, Antarctica. Pesqui Antarct Bras 4:155–169

    Google Scholar 

  • Frenette J, Demers S, Legendre L, Dodson J (1993) Lack of agreement among models for estimating photosynthetic parameters. Limnol Oceanogr 38(3):679–678. https://doi.org/10.4319/lo.1993.38.3.0679

    Article  CAS  Google Scholar 

  • Gómez I, Huovinen P (2015) Lack of physiological depth patterns in conspecifics of endemic Antarctic brown algae: a trade-off between UV stress tolerance and shade adaptation? PLoS One 10(8):e0134440

    Article  Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608. https://doi.org/10.1515/BOT.2009.073

    Article  Google Scholar 

  • Gómez I, Navarro NP, Huovinen P (2019) Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Prog Oceanogr 174:17–27. https://doi.org/10.1016/j.pocean.2018.03.013

    Article  Google Scholar 

  • González PM, Deregibus D, Malanga G et al (2017) Oxidative balance in macroalgae from Antarctic waters. Possible role of Fe. J Exp Mar Biol Ecol 486:379–386

    Article  Google Scholar 

  • Graham MH (1996) Effect of high irradiance on recruitment of the giant kelp Macrocystis (Phaeophyta) in shallow water. J Phycol 32:903–906. https://doi.org/10.1111/j.0022-3646.1996.00903.x

    Article  Google Scholar 

  • Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS One 8(12):e77917

    Article  Google Scholar 

  • Gutt J, Barratt I, Domack E, d’Udekem d’Acozd C, Dimmlere W, Grémare A, Heilmayer O, Isla E et al (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res II 58(1):74–83

    Article  Google Scholar 

  • Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR et al (2015) The Southern Ocean ecosystem under multiple climate change stresses – an integrated circumpolar assessment. Glob Chang Biol 21:1434–1453. https://doi.org/10.1111/gcb.12794

    Article  PubMed  Google Scholar 

  • Hanelt D (1996) Photoinhibition of photosynthesis in marine macroalgae. Sci Mar 60:243–248

    CAS  Google Scholar 

  • Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, Berlin, pp 3–23

    Chapter  Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    Article  CAS  Google Scholar 

  • Hendry KR, Meredith MP, Ducklow HW (2018) The marine system of the West Antarctic Peninsula: status and strategy for progress. Phil Trans R Soc A 376:20170179. https://doi.org/10.1098/rsta.2017.0179

    Article  PubMed  Google Scholar 

  • Henley WJ (1993) Measurements and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739. https://doi.org/10.1111/j.0022-3646.1993.00729.x

    Article  Google Scholar 

  • Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven A, Ralph PJ (2011) Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 60(5):1689–1706. https://doi.org/10.1002/lno.10128

    Article  CAS  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (eds) (2014) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2014: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. World Meteorological Organization, Geneva. 190 pp

    Book  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2019) Special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/srocc/download-report/

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547. https://doi.org/10.4319/lo.1976.21.4.0540

    Article  CAS  Google Scholar 

  • Jerosch K, Scharf FK, Deregibus D, Campana GL, Zacher K, Pehlke H, Falk U, Hass HC, Quartino ML, Abele D (2019) Ensemble modeling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord. Front Ecol Evol 7:207. https://doi.org/10.3389/fevo.2019.00207

    Article  Google Scholar 

  • Johnston EL, Connell SD, Irving AD, Pile AJ, Gillanders BM (2007) Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke’s Land. Polar Biol 30:781–788

    Article  Google Scholar 

  • Jones CT, Craig SE, Barnett AB, MacIntyre HL, Cullen JJ (2014) Curvature in models of the photosynthesis-irradiance response. J Phycol 50(2):341–355. https://doi.org/10.1111/jpy.12164

    Article  CAS  PubMed  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. PNAS 109(35):14052–14057. https://doi.org/10.1073/pnas.1207509109

    Article  PubMed  Google Scholar 

  • Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future Arctic. Front Mar Sci 1:77. https://doi.org/10.3389/fmars.2014.00077

    Article  Google Scholar 

  • Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9(10):737

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE et al (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Chang Biol 18:2981–2994

    Article  Google Scholar 

  • Krüger M (2016) Photosynthese Lichtkurven ausgewählter makroalgenarten des Kongsfjords (Spitsbergen, Norwegen) als Grundlage für Abschätzungnezur Produktivitäät des arktischen Kelpwaldes. Diploma Thesis, Technical University Bergakademie Freiberg, 194 pp

    Google Scholar 

  • Kühl M, Glud R, Borum J, Roberts R, Rysgaard S (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14. https://doi.org/10.3354/meps223001

    Article  Google Scholar 

  • Lagger C, Servetto N, Torre L, Sahade R (2017) Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord. PLoS One 12:e0186756

    Article  Google Scholar 

  • Lagger C, Nime M, Torre L, Servetto N, Tatián M, Sahade R (2018) Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 40:1–12

    Google Scholar 

  • Lüning K (ed) (1990) Seaweeds, their environment biogeography and ecophysiology. Wiley, New York. 527 pp

    Google Scholar 

  • Marcías ML, Deregibus D, Saravia L, Campana GL, Quartino ML (2017) Life between tides: spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica. Estuar Coast Shelf Sci 187:193–203

    Article  Google Scholar 

  • Marina TI, Salinas V, Cordone G, Campana GL, Moreira E, Deregibus D, Torre L, al e (2018) The food web of Potter Cove (Antarctica): complexity, structure and function. Estuar Coast Shelf Sci 200:141–151

    Article  Google Scholar 

  • Matta JL, Chapman DJ (1991) Photosynthetic responses and daily carbon balance of Colpomenia peregrina: seasonal variations and differences between intertidal and subtidal populations. Mar Biol 108:303–313. https://doi.org/10.1007/BF01344345

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Google Scholar 

  • Meredith MP, Falk U, Bers AV, Mackensen A, Schloss IR, Ruiz Barlett E, Jerosch K, Silva Busso A, Abele D (2018) Anatomy of a glacial meltwater discharge event in an Antarctic cove. Philos Trans R Soc A 376:20170163. https://doi.org/10.1098/rsta.2017.0163

    Article  CAS  Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound, Antarctica. Am Zool 31:35–48. https://doi.org/10.1093/icb/31.1.35

    Article  Google Scholar 

  • Moon HW, Hussin WMRW, Kim HC, Ahn I-Y (2015) The impacts of climate change on Antarctic nearshore megaepifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecol Indic 57:280–292. https://doi.org/10.1016/j.ecolind.2015.04.031

    Article  Google Scholar 

  • Navarro NP, Huovinen P, Gómez I (2019) Photosynthetic characteristics of geographically disjunct seaweeds: a case study on the early life stages of Antarctic and Subantarctic species. Prog Oceanogr 174:28–36. https://doi.org/10.1016/j.pocean.2018.11.001

    Article  Google Scholar 

  • Nelson S, Siegrist AW (1987) Comparison of mathematical expressions describing light-saturation curves for photosynthesis by tropical marine macroalgae. Bull Mar Sci 41:617–622

    Google Scholar 

  • Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M et al (2016) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39:2065. https://doi.org/10.1007/s00300-015-1760-6

    Article  Google Scholar 

  • Pasotti FE, Manini D, Giovannelli D, Wolfl A-K, Monien D, Verleyen E, Braeckman U, Abele D, Vanreusel A (2014) Antarctic shallow water benthos under glacier retreat forcing. Mar Ecol 36:716–733. https://doi.org/10.1111/maec.12179

    Article  Google Scholar 

  • Pavlov AK, Leu E, Hanelt D, Bartsch I, Karsten U, Hudson SR, Gallet J-C, Cottier F et al (2019) The underwater light climate in Kongsfjorden and its ecological implications. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in Polar Ecology, vol 2. Springer, Cham, pp 137–172

    Google Scholar 

  • Pritchard DW, Hurd CL, Beardall J, Hepburn CD (2013) Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. J Phycol 49(5):867–879. https://doi.org/10.1111/jpy.12093

    Article  CAS  PubMed  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8(3):e58223

    Article  CAS  Google Scholar 

  • Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-stage dependent. J Phycol 45:600–609. https://doi.org/10.1111/j.1529-8817.2009.00691.x

    Article  PubMed  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change 79:99–109. https://doi.org/10.1016/j.gloplacha.2011.06.009

    Article  Google Scholar 

  • Runcie KW, Riddle MJ (2011) Distinguishing downregulation from other non-photochemical quenching of an Antarctic benthic macroalga using in situ fluorometry. Eur J Phycol 46:171–180

    Article  CAS  Google Scholar 

  • Runcie JW, Riddle MJ (2012) Estimating primary productivity of marine macroalgae in East Antarctica using in situ fluorometry. Eur J Phycol 47(4):449–460

    Article  CAS  Google Scholar 

  • Runcie JW, Paulo D, Santos R, Sharon Y, Beer S, Silva J (2009) Photosynthetic responses of Halophila stipulacea to a light gradient: I – In situ energy partitioning of non photochemical quenching. Aquat Biol 7:143–152

    Article  Google Scholar 

  • Sahade R, Lagger C, Torre L, Momo FR, Monien P, Schloss I et al (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1:e1500050. https://doi.org/10.1126/sciadv.1500050

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherrer KJN, Kortsch S, Varpe Ø, Weyhenmeyer GA, Gulliksen B, Primicerio R (2018) Mechanistic model identifies increasing light availability due to sea ice reductions as cause for increasing macroalgae cover in the Arctic. Limnol Oceanogr 64(1):330–341. https://doi.org/10.1002/lno.11043

    Article  Google Scholar 

  • Schloss IR, Abele D, Moreau S, Norkko A, Cummings V, Thrush S (2012) Response of phytoplankton dynamics to 19 year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66. https://doi.org/10.1016/j.Jmarsys.2011.10.006

    Article  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523. https://doi.org/10.1126/science.1185779

    Article  CAS  PubMed  Google Scholar 

  • Schwarz AM, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799. https://doi.org/10.1007/s00300-003-0556-2

    Article  Google Scholar 

  • Smale DA, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305. https://doi.org/10.1111/j.0906-7590.2008.05456.x

    Article  Google Scholar 

  • Smith EL (1936) Photosynthesis in relation to light and carbon dioxide. Proc Natl Acad Sci 22:504–511

    Article  CAS  Google Scholar 

  • Spurkland T, Iken K (2011) Salinity and irradiance effects on growth and maximum photosynthetic quantum yield in subarctic Saccharina latissima (Laminariales, Laminariaceae). Bot Mar 54:355–365. https://doi.org/10.1515/BOT.2011.042

    Article  CAS  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Ianuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Res II 55:2041–2058. https://doi.org/10.1016/j.dsr2.2008.04.026

    Article  Google Scholar 

  • Steele J (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150. https://doi.org/10.4319/lo.1962.7.2.0137

    Article  Google Scholar 

  • Torre L, Servetto N, Eöry ML, Momo F, Tatián M, Abele D, Sahade R (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations. Polar Biol 35:1743–1748. https://doi.org/10.1007/s00300-012-1208-1

    Article  Google Scholar 

  • Turner J, Bindschadler RA, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA et al (2009) Antarctic climate change and the environment. SCAR, Cambridge

    Google Scholar 

  • Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M et al (2013) Antarctic climate change and the environment - an update. Polar Rec 50(3):237–259. https://doi.org/10.1017/S0032247413000296

    Article  Google Scholar 

  • Valdivia N, Díaz MJ, Garrido I, Gómez I (2015) Consistent richness-biomass relationship across environmental gradients in a marine macroalgal-dominated subtidal community on the western Antarctic Peninsula. PLoS One 10(9):e0138582

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274. https://doi.org/10.1023/A:1026021217991

    Article  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291. https://doi.org/10.1007/BF00345747

    Article  PubMed  Google Scholar 

  • Wiencke C (1990) Seasonality of brown macroalgae from Antarctica-a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600. https://doi.org/10.1007/BF00239370

    Article  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Ecological studies, vol 219. Springer, Heidelberg, pp 265–292. https://doi.org/10.1007/978-3-642-28451-9

    Chapter  Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD et al (2006) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126

    Article  Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2011) Phenology and seasonal physiological performance of polar seaweeds. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 181–194. https://doi.org/10.1007/978-1-4020-6285-8_13

    Chapter  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490. https://doi.org/10.1515/BOT.2009.082

    Article  Google Scholar 

Download references

Acknowledgments

The fieldwork described in this chapter has been performed at Carlini Station-Dallmann Laboratory within the framework of the scientific collaboration existing between Instituto Antártico Argentino/Dirección Nacional del Antártico and the Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research (AWI). The research was supported by Grants from DNA-IAA (PICTA 7/2008–2011) and ANPCyT-DNA (PICTO 0116/2012–2015, PICT 2017-2691). These studies were also supported by MINCYT-BMBF Program (AL/17/06-01DN18024) and Conicyt-Chile (Center FONDAP IDEAL 15150003). We are especially grateful to the scientific, logistic, and diving groups of Carlini Station. We thank Carolina Matula for her contribution to improve the annual light figure. We gratefully acknowledge financial support by the AWI. We thank Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, for allowing the reuse of material published in Deregibus 2017 Thesis. The present research also presents an outcome of the EU project IMCONet (FP7 IRSES, Action No. 319718) and EU project CoastCarb, Funding ID 872690, H2020-MSCA-RISE-2019 – Research and Innovation Staff Exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Deregibus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deregibus, D. et al. (2020). Carbon Balance Under a Changing Light Environment. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_9

Download citation

Publish with us

Policies and ethics