Skip to main content

Biological Clocks and Rhythms in Polar Organisms

  • Chapter
  • First Online:
POLAR NIGHT Marine Ecology

Part of the book series: Advances in Polar Ecology ((AVPE,volume 4))

Abstract

Biological clocks are universal to all living organisms on Earth. Their ubiquity is testament to their importance to life: from cells to organs and from the simplest cyanobacteria to plants and primates, they are central to orchestrating life on this planet. Biological clocks are usually set by the day–night cycle, so what happens in polar regions during the Polar Night or Polar Day when there are periods of 24 hours of darkness or light? How would a biological clock function without a timekeeper cycle? This chapter details evidence that biological clocks are central to structuring daily and seasonal activities in organisms at high latitudes. Importantly, despite a strongly reduced or absent day–night cycle, biological clocks in the Polar Night still appear to be regulated by background illumination. Here we explore evidence for highly cyclic activity, from behaviour patterns to clock gene expression, in copepods, krill and bivalves. The ultimate goal will be to understand the role of endogenous clocks in driving important daily and seasonal life cycle functions and to determine scope for plasticity in a rapidly changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade H, Massabuau J-C, Cochrane S et al (2016) High frequency non-invasive (HFNI) bio-sensors as a potential tool for marine monitoring and assessments. Front Mar Sci 3:187. https://doi.org/10.3389/fmars.2016.00187

    Article  Google Scholar 

  • Aschoff J, Pohl H (1978) Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65(2):80–84

    Article  CAS  PubMed  Google Scholar 

  • Ballesta-Artero I, Witbaard R, Carroll ML et al (2017) Environmental factors regulating gaping activity of the bivalve Arctica islandica in Northern Norway. Mar Biol 164(5):116. https://doi.org/10.1007/s00227-017-3144-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Båtnes AS, Miljeteig C, Berge J et al (2015) Quantifying the light sensitivity of Calanus spp. during the polar night: potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis? Polar Biol 38:51–65

    Article  Google Scholar 

  • Baumgartner MF, Tarrant AM (2017) The physiology and ecology of diapause in marine copepods. Annu Rev Mar Sci 9:387–411. https://doi.org/10.1146/annurev-marine-010816-060505

    Article  Google Scholar 

  • Beaugrand G, Conversi A, Atkinson A et al (2019) Prediction of unprecedented biological shifts in the global ocean. Nat Clim Chang 9(3):237

    Article  Google Scholar 

  • Berge J, Johnsen G, Nilsen F, Gulliksen B et al (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175

    Article  Google Scholar 

  • Berge J, Cottier F, Last KS et al (2008) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5(1):69–72

    Article  PubMed Central  Google Scholar 

  • Berge J, Renaud PE, Darnis G et al (2015) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271. https://doi.org/10.1016/j.pocean.2015.08.005

    Article  Google Scholar 

  • Bernard KS, Gunther LA, Sean H et al (2018) The contribution of ice algae to the winter energy budget of juvenile Antarctic krill in years with contrasting sea ice conditions. ICES J Mar Sci 71(1):206–216. https://doi.org/10.1093/icesjms/fsy145

    Article  Google Scholar 

  • Biscontin A, Wallach T, Sales G et al (2017) Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci Rep 7:17742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. PNAS 98(25):14509–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown M, Kawaguchi S, Candy S et al (2013) Long-term effect of photoperiod, temperature and feeding regimes on the respiration rates of Antarctic krill (Euphausia superba). Open J Mar Sci 3:40–51

    Article  Google Scholar 

  • Cohen JH, Berge J, Moline MA et al (2015) Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton? PLoS One 10(6): e0126247

    Google Scholar 

  • Cohen JH, Last KS, Waldie J et al (2019) Loss of buoyancy control in the copepod Calanus finmarchicus. J Plankton Res 1–4. https://doi.org/10.1093/plankt/fbz036

  • Conover RJ (1965) Notes on the molting cycle, development of sexual characters and sex ratio in Calanus hyperboreus. Crustaceana 8:308–320. https://doi.org/10.1163/156854065X00497

  • Cottier FR, Tarling GA, Wold A et al (2006) Unsynchronised and synchronised vertical migration of zooplankton in a high Arctic fjord. Limnol Oceanogr 51(6):2586–2599

    Article  Google Scholar 

  • Darnis G, Hobbs L, Geoffroy M et al (2017) From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol Oceanogr 62:1586–1605. https://doi.org/10.1002/lno.10519

    Article  CAS  Google Scholar 

  • de la Iglesia HO, Johnson CH (2013) Biological clocks: riding the tides. Curr Biol 23(20):R921–R923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà C, Biscontin A, Albiero A et al (2013) The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions. PLoS One 8(7):e68652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubowy C, Sehgal A (2017) Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205(4):1373–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96(2):271–290

    Article  CAS  PubMed  Google Scholar 

  • Falk-Petersen S, Pavlov V, Timofeev S et al (2007) Climate variability and possible effects on arctic food chains: the role of Calanus. In: Ørbaek JB, Kallenborn R, Tombre I et al (eds) Arctic alpine ecosystems and people in a changing environment. Springer, Berlin, pp 147–166

    Chapter  Google Scholar 

  • Foulkes NS, Whitmore D, Sassone-Corsi P (1997) Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Biol Cell 89(8):487–494

    Article  CAS  PubMed  Google Scholar 

  • Freese D, Søreide JE, Graeve M et al (2017) A year-round study on metabolic enzymes and body composition of the Arctic copepod Calanus glacialis: implications for the timing and intensity of diapause. Mar Biol 164:3

    Article  CAS  Google Scholar 

  • Fulton J (1973) Some aspects of the life history of Calanus plumchrus in the Strait of Georgia. J Fish Res Board Can 30:811–815

    Article  Google Scholar 

  • Garcia-March JR, Sanchis-Solsona MA, Garcia-Carrosa AM (2008) Shell gaping behaviour of Pinna nobilis L., 1758: circadian and circalunar rhythms revealed by in situ monitoring. Mar Biol 153:689–698

    Article  Google Scholar 

  • Goldman B, Gwinner E, Karsch FJ et al (2004) Circannual rhythms and photoperiodism. In: Dunlap JC, Loros JJ, DeCoursey PJ (eds) Chronobiology: biological timekeeping. Sinauer Associates Inc, Sunderland, pp 107–142

    Google Scholar 

  • Goto SG (2013) Roles of circadian clock genes in insect photoperiodism. Entomol Sci 16:1–16

    Article  Google Scholar 

  • Green RM, Tingay S, Wang ZY et al (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129(2):576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häfker NS, Meyer B, Last KS et al (2017) Circadian clock involvement in zooplankton diel vertical migration. Curr Biol 27:2194–2201. https://doi.org/10.1016/j.cub.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  • Häfker NS, Teschke M, Hüppe L et al (2018a) Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Mar Ecol Prog Ser 603:79–92. https://doi.org/10.3354/meps12696

    Article  CAS  Google Scholar 

  • Häfker NS, Teschke M, Last KS et al (2018b) Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol Oceanogr 63:2815–2838. https://doi.org/10.1002/lno.11011

    Article  Google Scholar 

  • Halberg F, Loewenson R, Winter R et al (1960) Physiologic circadian systems (differences in period of circadian rhythms or in their component frequencies; some methodologic implications to biology and medicine). Proc Minn Acad Sci 28:53–75

    Google Scholar 

  • Hobbs L, Cottier FR, Last KS et al (2018) Pan-Arctic diel vertical migration during the polar night. Mar Ecol Prog Ser 605:61–72

    Article  Google Scholar 

  • Höring F, Teschke M, Suberg L et al (2018) Light regime affects the seasonal cycle of Antarctic krill (Eupahusia superba): impacts on growth, feeding, lipid metabolism, and maturity. Can J Zool 96:1203–1213

    Article  CAS  Google Scholar 

  • Inouye SI, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76(11):5962–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    Google Scholar 

  • Jónasdóttir SH, Visser AW, Richardson K et al (2015) Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc Natl Acad Sci 112:12122–12126. https://doi.org/10.1073/pnas.1512110112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahru M, Brotas V, Manzano-Sarabia M et al (2010) Are phytoplankton blooms occurring earlier in the Arctic? Global Chang Biol 17:1733–1739. https://doi.org/10.1111/j.1365-2486.2010.02312.x

    Article  Google Scholar 

  • Last KS, Hobbs L, Berge L et al (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:244–251. https://doi.org/10.1016/j.cub.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  • Lenz PH, Roncalli V, Hassett RP et al (2014) De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda) – the dominant zooplankter of the North Atlantic Ocean. PLoS One 9(2):e88589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lincoln G (2019) A brief history of circannual time. J Neuroendocrinol 31(3):e12694

    Article  PubMed  CAS  Google Scholar 

  • Mazzotta GM, De Pittà C, Benna C et al (2010) A cry from the krill. Chronobiol Int 27:425–445

    Article  CAS  PubMed  Google Scholar 

  • Merlin C, Gegear RJ et al (2009) Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325(5948):1700–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuti ME, Denlinger DL (2013) Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol 53:131–143. https://doi.org/10.1093/icb/ict023

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer B, Teschke M (2016) Physiology of Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill. Advances in Polar Ecology. Springer International Publishing Switzerland, pp 145–174. https://doi.org/10.1007/978-3-319-29279-3_4

  • Meyer B, Auerswald L, Siegel V et al (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18

    Article  CAS  Google Scholar 

  • Meyer B, Freier U, Grimm V et al (2017) The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat Ecol Evol 1:1853–1861. https://doi.org/10.1038/s41559-017-0368-3

    Article  PubMed  Google Scholar 

  • Miljeteig C, Olsen AJ, Båtnes AS et al (2014) Sex and life stage dependent phototactic response of the marine copepod Calanus finmarchicus (Copepoda: Calanoida). J Exp Mar Biol Ecol 451:16–24

    Article  Google Scholar 

  • Mistlberger RE, Skene DJ (2004) Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev 79(3):533–556

    Article  PubMed  Google Scholar 

  • Naylor E (2010) Chronobiology of marine organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Paolucci S, van de Zande L, Beukeboom LW (2013) Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol 26(4):705–718

    Article  CAS  PubMed  Google Scholar 

  • Payton L, Sow M, Massabuau J-C et al (2017a) How annual course of photoperiod shapes seasonal behavior of diploid and triploid oysters, Crassostrea gigas. PLoS One 12(10):e0185918. https://doi.org/10.1371/journal.pone.0185918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payton L, Perrigault M, Hoede C et al (2017b) Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci Rep 7(1):3480. https://doi.org/10.1038/s41598-017-03797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolin F (2018). The role of photoperiod in the entrainment of endogenous clocks and rhythms in Antarctic krill (Euphausia superba). Doctoral dissertation, University of Oldenburg

    Google Scholar 

  • Piccolin F, Meyer B, Biscontin A et al (2018a) Photoperiodic modulation of circadian functions in Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). J Crustacean Biol 38(6):707–715. https://doi.org/10.1093/jcbiol/ruy035

    Article  Google Scholar 

  • Piccolin F, Suberg L, King R et al (2018b) The seasonal metabolic activity cycle of Antarctic krill (Euphausia superba): evidence for a role of photoperiod in the regulation of endogenous rhythmicity. Front Physiol 9:1715. https://doi.org/10.3389/fphys.2018.01715

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98(902):261–294

    Article  Google Scholar 

  • Raible F, Takekata H, Tessmar-Raible K (2017) An overview of monthly rhythms and clocks. Front Neurol 8:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Randall CF, Bromage NR, Duston J et al (1998) Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: a circannual phase–response curve. J Reprod Fertil 112:399–405. https://doi.org/10.1530/jrf.0.1120399

    Article  CAS  PubMed  Google Scholar 

  • Reygondeau G, Beaugrand G (2011) Future climate-driven shifts in distribution of Calanus finmarchicus. Global Chang Biol 17(2):756–766

    Article  Google Scholar 

  • Rey-Rassat C, Irigoien X, Harris R et al (2002) Energetic cost of gonad development in Calanus finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 238:301–306. https://doi.org/10.3354/meps238301

    Article  Google Scholar 

  • Rieger D, Shafer OT, Tomioka K et al (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26(9):2531–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SKDF (1960) Circadian activity rhythms in cockroaches. I. The free-running rhythm in steady-state. J Cell Comp Physiol 55(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328

    Article  CAS  PubMed  Google Scholar 

  • Sejr MK, Blicher ME, Rysgaard S (2009) Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland. Mar Ecol Prog Ser 389:149–158

    Article  Google Scholar 

  • Sharma VK (2003) Adaptive significance of circadian clocks. Chronobiol Int 20(6):901–919

    Article  PubMed  Google Scholar 

  • Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29(1):1–22

    Article  Google Scholar 

  • Søreide JE, Leu E, Berge J et al (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Chang Biol 16:3154–3163. https://doi.org/10.1111/j.1365-2486.2010.02175.x

    Article  Google Scholar 

  • Spoelstra K, Wikelski M, Daan S et al (2016) Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci 113(3):686–691

    Article  CAS  PubMed  Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythm 17(4):284–292

    Article  Google Scholar 

  • Taki K, Hayashi T, Naganobu M (2005) Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci 12:163–172

    Google Scholar 

  • Tauber E, Last KS, Olive PJ et al (2004) Clock gene evolution and functional divergence. J Biol Rhythm 19(5):445–458

    Article  CAS  Google Scholar 

  • Tauber E, Zordan M, Sandrelli F et al (2007) Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:1895–1988

    Article  CAS  PubMed  Google Scholar 

  • Teschke M, Kawaguchi S, Meyer B (2007) Simulated light regimes affect feeding and metabolism of Antarctic krill, Euphausia superba. Limnol Oceanogr 52(3):1046–1054

    Article  Google Scholar 

  • Teschke M, Wendt S, Kawaguchi S et al (2011) A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba. PLoS One 6(10):e26090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran D, Haberkorn H, Soudant P et al (2010) Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum. Aquaculture 298(3–4):338–345

    Article  Google Scholar 

  • Tran D, Nadau A, Durrieu G et al (2011) Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int 28:307–317

    Article  PubMed  Google Scholar 

  • Tran D, Sow M, Camus L et al (2016) In the darkness of the polar night, scallops keep on a steady rhythm. Sci Rep 6:32435. https://doi.org/10.1038/srep32435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Haren H, Compton TJ (2013) Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLoS One 8(5):e64435

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson NHF, Smallman BN (1971) The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopid copepods. Can J Zool 49:855–862

    Article  Google Scholar 

  • Zeng H, Qian Z, Myers MP et al (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380(6570):129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. Last .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Last, K.S., Häfker, N.S., Hendrick, V.J., Meyer, B., Tran, D., Piccolin, F. (2020). Biological Clocks and Rhythms in Polar Organisms. In: Berge, J., Johnsen, G., Cohen, J. (eds) POLAR NIGHT Marine Ecology. Advances in Polar Ecology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-33208-2_8

Download citation

Publish with us

Policies and ethics