Skip to main content

Characterization of Ice Binding Proteins from Sea Ice Algae

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1166))

  • 2226 Accesses

Abstract

Several polar microalgae are able to live and thrive in the extreme environment found within sea ice, where growing ice crystals may cause mechanical damage to the cells and reduce the organisms’ living space. Among the strategies adopted by these organisms to cope with the harsh conditions in their environment, ice binding proteins (IBPs) seem to play a key role and possibly contribute to their success in sea ice. IBPs have the ability to control ice crystal growth. In nature they are widespread among sea ice microalgae, and their mechanism of function is of interest for manifold potential applications. Here we describe methods for a classical determination of the IBP activity (thermal hysteresis, recrystallization inhibition) and further methods for protein characterization (ice pitting assay, determination of the nucleating temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weeks WF, Ackley SF (1982) The growth, structure, and properties of sea ice. In: CRREL monograph. U.S. Army ed., Hanover, p 82

    Google Scholar 

  2. Maykut GA (1986) The surface heat and mass balance. In: Untersteiner N (ed) NATO ASI series. Plenum Press, New York, NY, USA, pp 396–463

    Google Scholar 

  3. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13

    Article  Google Scholar 

  4. Cox GFN, Weeks WF (1983) Equation for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  5. Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73

    Article  Google Scholar 

  6. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  CAS  PubMed  Google Scholar 

  7. Raymond JA, Sullivan CW, DeVries AL (1994) Release of an ice-active substance by Antarctic sea ice diatoms. Polar Biol 14:71–75

    Article  Google Scholar 

  8. Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    Article  CAS  Google Scholar 

  9. Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1062

    Article  CAS  PubMed  Google Scholar 

  10. Gwak IG, Jung WS, Kim HJ, Kang S-H, Jin E (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639

    Article  CAS  PubMed  Google Scholar 

  11. Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219

    Article  CAS  PubMed  Google Scholar 

  12. Uhlig C, Kabisch J, Palm GJ, Valentin KU, Schweder T, Krell A (2011) Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 63:220–228

    Article  CAS  PubMed  Google Scholar 

  13. Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556

    Article  Google Scholar 

  14. Uhlig C (2011) Living inside sea ice – distribution and functional characterisation of antifreeze proteins in polar diatoms. Ph.D. thesis, University of Bremen

    Google Scholar 

  15. Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117

    Article  CAS  PubMed  Google Scholar 

  16. Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28:57–82

    Article  CAS  PubMed  Google Scholar 

  17. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–280

    Article  CAS  PubMed  Google Scholar 

  19. Nutt D, Smith JC (2008) Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc 130:13066–13073

    Article  CAS  PubMed  Google Scholar 

  20. Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci U S A 108:7363–7367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  22. Knight C (2000) Adding to the antifreeze agenda. Nature 406:249–250

    Article  CAS  PubMed  Google Scholar 

  23. Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci U S A 107:5423–5428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chakrabartti A, Hew CL (1991) The effect of enhanced α-helicity on the activity of a winter flounder antifreeze polypeptide. Eur J Biochem 202:1057–1063

    Article  Google Scholar 

  25. Braslavsky I, Drori R (2013) LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. J Vis Exp 72:4189

    PubMed  Google Scholar 

  26. Knight CA, Wierzbicki A (2001) Adsorption of biomolecules to ice and their effects upon ice growth. 2. A discussion of the basic mechanism of “antifreeze” phenomena. Crystal Growth Design 1:439–446

    Article  CAS  Google Scholar 

  27. Raymond J, Wilson P, DeVries AL (1989) Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci U S A 86:881–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Raymond JA, Janech MG, Fritsen C (2009) Novel ice-binding proteins from a psychrophilic antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    Article  CAS  Google Scholar 

  29. Barlow TW, Haymet ADJ (1995) ALTA: An automated lag-time apparatus for studying nucleation of supercooled liquids. Rev Sci Instrum 66:2996–3007

    Article  CAS  Google Scholar 

  30. Wilson PW, Lu W, Xu H, Kim P et al (2012) Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys Chem Chem Phys 15:581–585

    Article  PubMed  Google Scholar 

  31. Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in Nature: supercooling point measurement and the role of heterogeneous nucleation. Cryobiology 46:88–98

    Article  CAS  PubMed  Google Scholar 

  32. Wilson PW, Osterday KE, Heneghan AF et al (2010) Type I antifreeze proteins enhance ice nucleation above certain concentrations. J Biol Chem 285:34741–34745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wilson PW, Haymet ADJ (2009) Effect of solutes on the heterogeneous nucleation temperature of supercooled water: an experimental determination. Phys Chem Chem Phys 11:2679–2682

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maddalena Bayer-Giraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bayer-Giraldi, M., Jin, E., Wilson, P.W. (2014). Characterization of Ice Binding Proteins from Sea Ice Algae. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0844-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0843-1

  • Online ISBN: 978-1-4939-0844-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics