Skip to main content

Activity-Based Screening of Metagenomic Fosmid Libraries for Hydrogen-Uptake Enzymes

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

Here, we outline how to identify hydrogenase enzymes from metagenomic fosmid libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis MR-1 (ΔhyaB) via triparental mating. If a fosmid clone exhibits hydrogen-uptake activity, S. oneidensis’ phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. The screen enables screening of 48 metagenomic fosmid clones in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358. https://doi.org/10.1038/3510463435104634

    Article  CAS  PubMed  Google Scholar 

  2. Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE et al (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12(2):463–491. https://doi.org/10.1039/c8ee01157e

    Article  CAS  Google Scholar 

  3. Rosen MA, Koohi-Fayegh S (2016) The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol Environ 1(1):10–29. https://doi.org/10.1007/s40974-016-0005-z

    Article  Google Scholar 

  4. Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, , et al (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38(1):36–51. doi:https://doi.org/10.1039/b801144n

    Article  CAS  PubMed  Google Scholar 

  5. Wait AF, Parkin A, Morley GM, dos Santos L, Armstrong FA (2010) Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J Phys Chem C 114(27):12003–12009. https://doi.org/10.1021/jp102616m

    Article  CAS  Google Scholar 

  6. Adam N, Schlicht S, Han Y, Bechelany M, Bachmann J, Perner M (2020) Metagenomics meets electrochemistry: utilizing the huge catalytic potential from the uncultured microbial majority for energy-storage. Front Bioeng Biotechnol 8:567. https://doi.org/10.3389/fbioe.2020.00567

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mazurenko I, Wang X, De Poulpiquet A, Lojou E (2017) H2/O2 enzymatic fuel cells: from the proof-of-concept to powerful devices. Sustain Energy Fuels 1:1475–1501. https://doi.org/10.1039/C7SE00180K

    Article  CAS  Google Scholar 

  8. Tang KH, Tang YJ, Blankenship RE (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:165. https://doi.org/10.3389/fmicb.2011.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551. https://doi.org/10.1128/MMBR.00033-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71(1–2):123–127. https://doi.org/10.1016/0378-1097(90)90043-P

    Article  CAS  Google Scholar 

  11. Hügler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3:261–289. https://doi.org/10.1146/annurev-marine-120709-142712

    Article  Google Scholar 

  12. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 34(17):7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080

    Article  CAS  Google Scholar 

  13. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107(10):4206–4272. https://doi.org/10.1021/cr050196r

    Article  CAS  PubMed  Google Scholar 

  14. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC et al (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10(3):761–777. https://doi.org/10.1038/ismej.2015.153

    Article  CAS  PubMed  Google Scholar 

  15. Sondergaard D, Pedersen CN, Greening C (2016) HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6:34212. https://doi.org/10.1038/srep34212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perner M, Gonnella G, Kurtz S, LaRoche J (2014) Handling temperature bursts reaching 464°C: different microbial strategies in the Sisters Peak hydrothermal chimney. Appl Environ Microb 80(15):4585–4598. https://doi.org/10.1128/AEM.01460-14

    Article  CAS  Google Scholar 

  17. Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R (2011) Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microb 77(17):6027–6035. https://doi.org/10.1128/AEM.00673-11

    Article  CAS  Google Scholar 

  18. Vargas WA, Weyman PD, Tong Y, Smith HO, Xu Q (2011) [NiFe] hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Appl Environ Microb 77(6):1990–1998. https://doi.org/10.1128/AEM.01559-10

    Article  Google Scholar 

  19. Hansen M, Perner M (2016) Hydrogenase gene distribution and H2 consumption ability within the Thiomicrospira lineage. Front Microbiol 7:99. https://doi.org/10.3389/fmicb.2016.00099

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maroti G, Tong Y, Yooseph S, Baden-Tillson H, Smith HO et al (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microb 75(18):5821–5830. https://doi.org/10.1128/AEM.00580-09

    Article  CAS  Google Scholar 

  21. Adam N, Perner M (2018) Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME J 12(5):1225–1236. https://doi.org/10.1038/s41396-017-0040-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aakvik T, Degnes KF, Dahlsrud R, Schmidt F, Dam R et al (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296(2):149–158. https://doi.org/10.1111/j.1574-6968.2009.01639.x

    Article  CAS  PubMed  Google Scholar 

  23. Lovley DR, Phillips EJ, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microb 55(3):700–706

    Article  CAS  Google Scholar 

  24. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Myers CR, Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108(1):15–22

    Article  CAS  Google Scholar 

  26. Meshulam-Simon G, Behrens S, Choo AD, Spormann AM (2007) Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microb 73(4):1153–1165. https://doi.org/10.1128/AEM.01588-06

    Article  CAS  Google Scholar 

  27. Hansen M, Perner M (2015) A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage. ISME J 9(3):696–707. https://doi.org/10.1038/ismej.2014.173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nicolas Rychlik for constructing the S. oneidensis ΔhyaB mutant.

This work has been supported by research grants DFG PE1549-6/1 and DFG-PE1549-6/3 from the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Adam-Beyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adam-Beyer, N., Perner, M. (2023). Activity-Based Screening of Metagenomic Fosmid Libraries for Hydrogen-Uptake Enzymes. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics