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Abstract - In the northern McMurdo Sound (Ross Sea, Antarctica), the CRP-2/2A drillhole T
targeted the western margin of the Victoria Land Basin to investigate Neogene (0 Palacogene /
climatic and tectonic history by obtaining continuous core and downhole logs. Well logging of / N f
CRP-2/2A has provided a complete and comprehensive dataset of in sife geophysical %

measurements.

This paper describes the evaluation and interpretation of the downhole logging data using \ et A

multivariate statistical methods. Two major types of multivariate statistical methods were used, \R\”‘ P2A %
. . . . . . . - . - §

cach yielding a different perspective: (1) Factor analysis was used as an objective tool for . g
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classification of the drilled sequence based on physical and chemical properties. The factor logs

arc mirroring the basic geological controls (i.e., grain size, porosity, clay mincralogy) behind the measured geophysical
propeities, thereby making them easier to interpret geologically. (2) Cluster analysis of the logs groups similar downhole
geophysical properties into one cluster, delineating individual logging or sedimentological units. These objectively and
independently defined units, or statistical electrofacies, are helpful in differentiating lithological and sedimentological

characterisations (e.g. grain size, provenance).

The multivariate statistical methods of factor and cluster analysis proved to be powerful tools for fast, reliable, and objective
characterisation of downhole geophysical properties at CRP-2/2A, resulting in interpretations which are consistent with

sedimentological findings.

INTRODUCTION
CAPE ROBERTS PROJECT

The main aims of the Cape Roberts Project are to
document past variations in Antarctic ice coverand climate
and to reconstruct the early uplift history of the nearby
Transantarctic Mountains. The Cape Roberts drillholes
CRP-1 (Cape Roberts Science Team, 1998) and CRP-2/
2A (Cape Roberts Science Team, 1999) are located in a
sedimentary basin just seaward of the edge of the present
ice sheet, about 20 km offshore Cape Roberts, a small cape
¢. 125 km NE of McMurdo, Ross Island. The time period
expected to be sampled by the drillholes (10-50+ Ma) is of
interestbecause present knowledge suggests thatitincludes
the time when Antarcticachanged from an ice-free continent
to an ice-covered continent. A detailed description of the
project and its aims, geological setting, and preliminary
results is given by Cape Roberts Science Team (1998,
1999). CRP-2A extended to 624.15 mbsf (metres below
sea floor) with an average 95% recovery of Oligocene to
Quaternary sediments. Most of the downhole logging tools
were be run to the bottom of the hole. Coring and
downhole logging of the drillholes are essential
prerequisites to achieve the aims of the project.

DOWNHOLE LOGGING

A detailed description of the downhole logging tools
used in CRP-2A and of the downhole logging techniques

is given in the Initial Report on CRP-2/2A (Cape Roberts
Science Team, 1999). These downhole logs provide a
representative record of in situ physical properties of
formations adjacent to the drillhole. A total of 15 physical
and chemical parameters was measured by eight tools.
Almost all tools were run over the entire borehole section
down to the final depth of 624.15 mbsf. In addition to these
conventional borehole measurements, aboreholeteleviewer
(BHTV) was run and a vertical seismic profiling (VSP)
experiment was carried out; the results of these are presented
by Moos et al. (this volume) and Henrys et al. (this
volume), respectively. The temperature profiles are
published by Biicker et al. (this volume).

MULTIVARIATE ANALYSES

Interpretation of the comprehensive suite of logs
requires acombination of geophysical and sedimentological
perspectives. The abundance of logging data and the
demand for a quick, objective, and reliable evaluation and
interpretation call for the application of multivariate
statistical methods. Multivariate factor analysis is a method
of reducing the amount of logging data without losing
importantinformation. The resultis a set of factor logs that
provide anew integrated presentation and are helpful tools
for further interpretation. Subsequent cluster analysis of
the most significant factor logs is a useful and objective
method foridentifying and confirming significantdownhole
log characteristics.

Multivariate statistical analyses are seldom applied to
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logging data, yet they arc an excellent method of handling
the large amount of logging data and meeting the demand
for a fast, reliable and objective evaluation and
interpretation. In this study, the multivariate procedures
of factor and cluster analysis are applied to the CRP-2A
logging measurements. Factor analysis is used in order to
rescale and reduce the original dataset and for deriving a
deeper insight into the interrelated rock properties and
background processes. Cluster analysis is used to ,,block*
log data and define sedimentological characteristics such
as grain size and provenance changes as objectively as
possible, which is particularly importantin depth intervals
with core loss.

DOWNHOLE LOGGING DATA AND QUALITY

An almost complete set of downhole logging data was
recorded in hole CRP-2A using tools from the Institute for
Joint Geoscientific Research (GGA, Germany). Although
these tools differ slightly from commercial wireline logging
tools (e.g., Schlumberger), they are based on the same
physical principles and produce comparable results. A full
description of the principles and measurements performed
by the logging tools is given by Cape Roberts Science
Team (1999). The data are considered to be of generally
good quality. Thisis the mostcomplete and comprehensive
dataset of in sifu geophysical measurements ever obtained
in Antarctica up to now.

The downhole measurements of physical and chemical
properties used in this study consist of the following:
spectral gammaray (GR), thorium, uranium, and potassium
contents (Th, U, K), formation bulk density (den), electrical
resistivity long spacing (RLong), magnetic susceptibility
(sus), sonic velocity (Vp), and neutron porosity (phi). The
radius of investigation and vertical resolution of each
logging tool depend on the measuring principle and
measured property. A summary of these tool responses is
given in the CRP-2 Initial Report (Cape Roberts Science
Team, 1999).

Figure 1 is a composite plot of all downhole
measurements used in this study, together with a simplified
lithological profile derived from visual core descriptions
(Cape Roberts Science Team, 1999). Integrated in figure 1
are also the continuous, whole-core measurements made in
the on-site core lab (Niessen et al., this volume) and the
laboratory measurements on core plugs (Brink et al., this
volume). The excellent correlation between downhole,
whole-core, and core-plug measurements demonstrates
that these independently obtained datasets are of overall
good quality and are well matched with respect to depth.

SPECTRAL GAMMA RAY

Spectral Gamma Ray was one of the first measurements
after completion of drilling operations (the first
measurement was temperature), and the tool was run over
theentire borehole depth. GammaRay (GR) values together
with thorium (Th) and potassium (K) content show a
general decrease downhole, whereas uranium (U) varies
around a nearly constant value. Th and K have the highest

correlation coefficients to GR and thus are the dominant
contributors. Oftenthe GRis used as ashale/sand indicator
and to estimate shale content (Rider 1996). However, this
normally expected distinction between mudstone and
sandstone GR values is often subtle within CRP-2, as is
evident when comparing the spectral gamma-ray log (0
lithology (Fig. 1). In the top 300 m of the borehole, there
is no obvious correlation between lithology and GR. In
contrast, the lower part of the borehole exhibits a generally
good correlation, with high values for mudstones and low
values for sandstones. This dramatic change i gamma-
ray behavior at about 300 mbsf indicates a change in
petrofacies and provenance associated with a major
unconformity at this depth.

Wherever changes in grain size are reflected in changes
in the GR (e.g. below 300 mbsf), this tool can be used as
afacies indicator. Because of this relationship, the GR fog
shows a close correlation with the core-based
palacobathymetry curve (Cape Roberts Science Team,
1999).

DENSITY AND VELOCITY

The downhole logs of velocity and density include
gaps due to special borehole conditions (drill string in
place at 0-60 and 170-200 mbsf, hole collapse at 444 mbsf)
and measurement problems (255-280 mbsf). Differences
between log density and core density in the depth interval
170-200 mbsf can also be attributed to drillstring effects.
As expected, the core-plug measurements of P-wave
velocity are in general slightly higher than the logging
data. Usually plugs are taken from intact core scctions,
resulting in a bias to higher velocities. Average sonic
velocity is about 2.0 km/s in the upper part of the borehole,
but there is a sharp increase to about 2.7 kn/s at 300 mbsf,
corresponding presumably to the early/late Oligocene
boundary (ca. 28-30 Ma). Velocity (as well as density)
increases irregularly downhole to about 4.0 kiy/s at the
bottom of the hole. The seismically derived V4/V5
boundary is estimated to correspond with a sharp velocity
increase at 440 mbsf (Henrys et al., this volume).
The higher velocities below 300 mbsf probably reflect
more extensive carbonate cementation (Dietrich, this
volume).

NEUTRON POROSITY

The neutron porosity (phi) measurement does not
simply respond to formation porosity; instead, it is a
measurement of the total hydrogen content within the bulk
rock. Thus, in clay-rich formations, phi records the
combined effect of porosity and clay content. As different
clay types have different percentages of bound water
(Rider, 1996), the neutron porosity measurement gives an
integrated mix of information about porosity, clay content,
and clay type. Neutron porosity measurements are most
accurate in formations with porosities nothigher than 40%
(Theys, 1991). While CRP-2A neutron porosities are less
than 60%, they are considered to result inreliable phi data.

The advantage ofhaving both core and neutron porosity
measurements is that comparison of the two can provide
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Fig. I - Core derived lithology and downhole logs for hole CRP-2A. From left to right, the following parameters are shown: first column: core derived
lithology; second column: potassium (K, 0-4%), uranium (U, 0-8 ppm), thorium (Th, 0-20 ppm), gamma ray (GR, 0-150 API); third column: whole-
core density (WBD, 1.5-3.0 g/cm?), density log (Den, 1.5-3.0 g/cm?), core-plug density (thoplug, 1.5-3.0 g/cm?); fourth column: whole-core P-wave
velocity (Vpcore, 1.5-6.0 km/s), velocity log (Vp, 1.5-6.0 km/s), core-plug velocity (velplug, 1.5-6.0 km/s); fifth column: whole-core porosity
(porocore, 0-100 p.u.), neutron porosity log (phi, 0-100 p.u.), calculated porosity (phicalc, 0-100 p.u.), core-plug porosity (poroplug, 0-100 p.u.); sixth
column (logarithmic scale): susceptibility log (sus, 0.2-200 10 SI), whole-core susceptibility (suscore, 0.2-200 105 SI), core-plug susceptibility
(susplug, 0.2-200 10~ SI), electrical resistivity log (Rlong, 0.5-50 Ohmm); seventh column: delta porosity (neutron porosity — core porosity) (dphi,
0-50 p.u.); eighth column: potassium/uranium ratio (K/U, 0-2- 11, thorium/potassium ratio (Th/K, 2-5-10%). (lithology legend see Barrett et al., this
volume).
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further insights. The difference between these two
measurements is shown as the dphi curve in figure 1. This
delta-porosity should isolate information about clay type
and clay content, because intergranular porosity measured
on cores (using density logging methods) has been removed.
The broad pattern of this dphi curve is a downhole increase,
pointing to differences in clay type and/or clay content
with depth. A step increase in the dphi log can be seen at
about 350 mbsf, below this depth the dphi values are
constantly higher than in the upper part of the borehole.
Whereas neutron porosities are affected both by free water
and by different interlayer water contents of clays, the dphi
curve is expected to respond mainly to clays. Smectite, for
example, has an average interlayer water content of 18-
22% (Weaver, 1973), resulting in a neutron porosity value
of 0.44 (Rider, 1996), whereas illite has only 8% interlayer
water content and a neutron porosity value of 0.30.

For siliciclastic rocks, the responses of the neutron
porosity log (<I)nk)g) and the density log (plog), along with
the mass balance equation, are given by the following:

p[og = true * pl'+ Vss*pss + Vc\*pc] (1)
(I)Nlog = (Dlruc * (DNer Vss * (DNss + Vcl * (DNcl (2)
1 = (Dtrue + Vss + Vcl (3)

with the material properties and indices:

Sandstone matrix: p_=2.65 g/cm’ @ =0d.u
Clay matrix: p,=2.67glem’ &  =04du
Fluid (sea water): p, =1.04 g/em® @ =1.0d.u

f fluid, cl clay, ss sandstone, N neutron-tool, d.u.
decimal units

Equations (1) ~ (3) can be combined, eliminating the
unknown quantities of sandstone content (V_, volume
percent) and clay content (V _, volume percent), and solving
for true porosity (©, ) (Western Atlas 1992, Serra 1986):

(DNCI*(plog - pss) - (DNlog*(pcl - pss)
(Dtrue = (4)
(DNCI*(pf— pss) - (pcl - pss)

The true porosity as calculated by equation (4) is
shown in figure | in the column ,,phicalc”. The high
correlation between core-based porosity and this log-
based true porosity (R=0.70 withlinear regression equation:
phicalc = 0.94 + 0.99* porocore) indicates that the
calculation procedure given above is accurate. Based on
this procedure, the neutron porosity measurement can be
used to give information about both true formation porosity
and clay content/type.

MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility tool was run in the open-
hole intervals 12-25, 63-170, and 200-624 mbsf. Due to
the lack of a tool calibration for this new tool, log-based
susceptibility was calibrated to whole-core volume
magnetic susceptibility (10~ SI) based on linear regression

of the logarithm of both measurement suites.

Like GR, magnetic susceptibility can be used as a
grain-size indicator. Fine grained sediments usually have
much higher concentrations of both magnetic and
radiogenic minerals than coarse grained sediments. In
general, CRP-2A magnetic susceptibility shows a similar
behaviour to spectral gamma ray: correlation to lithology is
good inthe lower part of the borehole and poorabove 300 mbsf.
A general change in susceptibility as well as GR behaviour
is evident at this depth, with a higher variability for values
below 300 mbsf. Thus the magnetic susceptibility and
GR logs are most useful as grain-size indicators helow
300 mbsf.

ELECTRICAL RESISTIVITY

Electrical resistivity was measured with two depths of
investigation: Rlong for the deep depth of investigation,
and Rshort for the shallow depth of investigation. In
figure 1 only Rlong is shown because Rshort is more
affected by drilling activities and borehole wall
infiltrations.

Because of the large depth of investigation of this tool,
electrical resistivity shows much smaller variations than
all the other measurements. Electrical resistivity is mainly
responding to formation porosity as the pore fluids are
affecting electrical conductivity rather than the rock matrix.
In general, electrical resistivity shows adownward increase,
reflecting a decrease in porosity and an increase i
cementation.

STATISTICAL METHODS AND
THEORETICAL BACKGROUND

A description of the basic ,,on-ice” data treatment is
giveninthe Initial Report of CRP-2 (Cape Roberts Science
Team 1999). In this paper, a detailed procedure of the
statistical data processing is described and documented.
Excellent reviews of general statistical techniques, their
use in geosciences, and examples of their use in borehole
geophysics are given by Backhaus et al. (1996), Brown
(1998), Bucheb & Evans (1994), Doveton (1994), Davis
(1986), Elek (1990), Howarth & Sinding-Larsen (1983),
and Rider (1996). The multivariate statistical procedure
for the evaluation of the downhole logs is outlined in
figure 2 and described below.

DATA PREPARATION, QUALITY CONTROL

The first step consists of filling all gaps in the downhole-
measurement dataset, using corresponding whole-core
measurements. For the density, porosity, and velocity
logs, about 35% were filled up by whole-core measurements
(mostly below 445 mbsf), whereas for the susceptibility
the share of core measurements is less than 10%. The
result is a complete dataset of parameters that will be used
for the statistical analyses. Validity of this procedure is
verified by the excellent correlation between whole-core
and downhole measurements.

The statistical methods employed in this paper require
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Fig. 2~ General outline of the multivariate statistical procedure used here
for evaluation and interpretation of downhole logs. The quality control
includes despik ing, standardization, and, if necessary, taking the logarithm
of a log. The corrected logs are the input variables for the factor analysis,
and the factor logs are the input variables for the cluster analysis,
resulting in the clusterlogs. For the final interpretation, the factor logs as
well as the clusterlogs are used.

that each observational dataset (i.e. geophysical log) be
normally distributed. When this is not the case, the
observations should be transformed so that they more
closely followanormal distribution. Forexample, electrical
resistivities and magnetic susceptibilities often exhibit
log-normal distributions, so application of a logarithmic
transform to these logs will yield observations that are
more normally distributed. Erroneous values, when they
can be clearly identified, must also be omitted from the
analysis, but these amounted to less than 1% over the
entire borehole. Often, single peaks in the dataset could be
attributed to lonestone effects. Fortunately, downhole
logging generally provides large, reliable datasets so that
this editing procedure has little impact on the analysis.

Finally, the observational data should be standardised
prior to the statistical analysis, by subtracting the mean
and dividing by the standard deviation. The resulting logs
are dimensionless, each with a mean of zero and a standard
deviationof 1. This permits an equal-weighting comparison
among all the observations, regardless of their original
scaling.

Thecomplete dataset, including the computed ratios of
potassium/uranium (K/U) and thorium/potassium (Th/K),
is shown in figure 1.

FACTOR ANALYSIS

Factor analysis (FA) is a technique for examining the
interrelationships among a set of observations. It is used
to derive a subset of uncorrelated variables called factors

that adequately explain the variance observed in the original.
observational dataset (Brown, 1998). Often such analysis
reveals structure in the dataset by identifying which
observations are most strongly correlated. Interpretation
of these correlations contributes to understanding of the
properties that are being measured and the underlying
processes. A significant advantage of FA is that the
number of variables can be dramatically reduced without
losing important information. In other words, the
dimensionality of the observational dataset can be reduced.
Half a dozen or more interrelated variables might be
reduced to perhaps two or three factors that account for
nearly all the variance inthe original dataset. Visualisation
of two or three factors is much simpler than visualisation
of the entire dataset.

Sometimes FA is confused with principal component
analysis (PCA),butthereis asignificantdifference between
the two techniques. Strictly speaking, PCA is simply a
mathematical manipulation involving the eigenvectors of
the covariance or correlation matrix of the observations.
Statistical considerations such as probability or hypothesis
testing are not included in PCA (Davis, 1986). Often,
though, PCA forms the starting point for FA. In FA, a
series of assumptions is made regarding the nature of the
parent population from which the samples (i.e.,
observations) are derived. For example, the observations
are assumed to follow a normal distribution. Such
assumptions provide the rationale for the operations that
are performed and the manner in which the results are
interpreted (Davis, 1986).

Another way of explaining the difference between FA
and PCA lies in the variance of variables (communality)
that is analysed. Under FA, attempts are made to estimate
and eliminate variance due to error and variance that is
unique to each variable (Brown, 1998). Consequently, the
FA resultconcentrates on variables with high communality
values (Tabachnick & Fidell, 1989), i.e. only the variance
that each variable shares with other observed variables is
available for analysis and interpretation. In this
investigation the FA method is used, because error and
unique variances only obscure the picture of underlying
processes and structures.

Factors and factor loadings were calculated from the
rescaled logging curves using standard R-mode factor
analysis procedures (Davis, 1986). A Kaiser Varimax
factorrotation (Davis, 1986) is applied because the matrix
of factor loadings is often not unique or easily explained.
The factor rotation results in a simplification of the factor
co-ordinate system. The technique of factor calculationis
that of extraction of the eigenvalues and eigenvectors
from either the correlation or covariance matrix. With
appropriate assumptions, the factor model is simply a
linear combination of underlying properties. A factor is
taken as being significant for an underlying property if it
accounts forasignificant amount of variance, orin practical
terms, if its eigenvalue is greater than 1. Factors with
eigenvalues less than 1 account for less variation than one
of the initial variables.

Theoretically, because they are maximally
uncorrelated, each factor represents an underlying rock
property such as porosity, lithology, grain size, fracture
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content, water content, or clay type. This is not strictly the
case, in reality, since there is obviously no pre-condition
that the rock properties will themselves be uncorrelated.
Indeed, it is possible to envision highly non-linear
interrelations between various rock properties like porosity,
lithology, fracture content, fluid content, and clay type. As
a first-order interpretation, though, FA provides an
objective, rapid, and methodical approach for identifying
major features of an observational dataset. Also, since
many borehole geophysical tools were initially designed
torespond primarily to porosity and lithology, Elek (1990)
argued that the first two factors (i.e., the two factors
accounting for the highest degrec of variance in the
observations) derived from FA will also relate directly to
porosity and lithology. This is a reasonable generalisation
when the interaction between various rock properties is
known to be relatively simple.

For the CRP-2 data set, more than 80% of the variance
observed in the input variables can be described by the first
three factors (Tab. 1). This means that the amount of
explained variance is greater than 80% although the number
of variables has been reduced from 11 to 3.

CLUSTER ANALYSIS

After performing FA, statistical electrofacies are
defined using cluster analysis. Clustering techniques are
generally used for grouping individuals or samples into a
prioriunknown groups. The objective of the clusteranalysis
is to separate the groups based on measured characteristics
with the aim of maximising the distance between groups.
Hierarchical clustering methods yield a series of successive
agglomerations of data points on the basis of successively
coarser partitions. One of the most common methods of
complete-linkage hierarchical clustering is the so-called
Ward method (Davis 1986), which is also used in this
study.

We use the three factor logs that accounted for the
greatest amount of variance in the initial data set, rather
than the 11 original logs, for the cluster analysis. Prior to
applying the cluster analysis, the factor logs are reduced to
a 0.5 m depth interval to reduce the number of data points.
This step, although not essential, has two advantages.
First, the cluster analysis calculations are very time
consuming and require a massive amount of computer
memory. Reducing the number of data points results in
faster calculations. Second, this step was performed in
order to get a clusterlog that does not show too many
details, i.e. showing a new cluster every few centimetres.
A complete-linkage hierarchical cluster analysis using a
Euclidean norm (,,Ward-method®, see Davis, 1986) was
performed on the three decimated factors. This allowed
the identification of statistical electrofacies, or logging
units, with distinct combinations of rock physical and
chemical properties (e.g., Serra, 1986). A dendrogram, a
tree diagram showing similarity or connectivity between
samples and clusters, is used to decide how many clusters
are significant and useful. For the CRP-2 site, the number
of significantclusters based on multivariate analysis of the
three factor logs is 4. Taking into account more clusters
would result into a subdivision of these most significant

clusters and thus complicating an interpretation.

There are several commercial software packages (hat
can be used to perform all the multivariate statistical
methods described above. For this investigation we used
WINSTAT 3.1 (Kalmia Software) and MVSP 3.0 (Kovach
1998) on a PC platform under Windows NT 4.0.

APPLICATION OF MULTIVARIATE
STATISTICAL METHODS

FACTOR L.OGS

One of the main advantages of the factor logs is that
they are — by definition - independent of each other. This
means that the ambiguity of downhole logs is strongly
reduced and that they can be interpreted directly in terms
of background controlling variables.

For the FA, the downhole logs of figure 1 were taken
into account. The shallow resistivity log was not used
because it correlates strongly with the deep resistivity log;
its inclusion would weight resistivity tooheavily compared
to the remaining data. Deep resistivity was used rather
than shallow resistivity because it is more likely to be
representative of the undisturbed sediment away {rom the
borehole.

The results of the factor analysis of the downhole
logging data, along with factor eigenvalues and factor
loadings, are listed in table 1. The factor logs are plotted
in figure 3, together with the lithology column and the
multivariate clusterlog. Factor loadings greater than (.5
are taken as significant, shown in bold in Table I, and
flagged with plus or minus signs at the bottom of Figure 3.
A plus sign represents a positive loading whereas a minus
sign represents a negative loading of the corresponding
variable. Three factors were extracted from the original
data set, accounting for 82% of the total variance of the
original dataset.

The factor analysis shows that the most discriminating
variables are density, porosity, velocity, and gamma ray,
each with a factor loading greater than 0.9 (Tab. 2).
Gamma ray and susceptibility are mainly related to
lithology and grain size (Rider 1996); in this case, GR is
particularly related to clay type and clay content. Together
with the thorium and potassium contents, and to a lesser
extent theuranium content, these variables form the Factor2
log. All factor loadings of Factor2 are positive and greater
than 0.8 (except the uranium content with a value 0.66);
thus the underlying physical or chemical properties show
a good positive correlation. Overlain over the Factor2 log
in figure 3 is the silt content derived by Neumann &
Ehrmann (this volume). As can be seen, there is a close
correlation over the entire section between the
experimentally derived grain sizes and the Factor2 log,
leading to the conclusion that Factor2 ismore or less a high
resolution grain size log. A similar, but antithetical relation
relates the sand content with Factor2. This means, that
grain size is the background process for the physical and
chemical properties summarised in Factor2 andisreflecting
the lithology.

The ratio K/U, and to a smaller extent the ratio Th/K,
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is the main loading for Factor!; both factor loadings are
greater tharn 0.75 and showing opposite signs. Thorium/
potassium and potassium/uranium ratios often indicate
clay type (Rider 1996, Jurado et al. 1997). Thus, Factor!
is probably related to changes in clay type and/or clay
content. As illite has the highest potassium content among
the differentclay types (Rider 1996), borehole sections

with high Factorl values may indicate higher illite
concentrations, whereas sections with low Factor] values
may be characteristic of a higher smectite content. But it
should be mentioned that a complication for using the
ratios Th/K and K/U as clay mineral indicators is that K-
rich McMurdo volcanics and K-feldspar are often more
abundant in the upper 300 m of the borehole than the clay

Tab. I - Results of the factor analysis of downhole logs from CRP-2A. The number of valid cases reflects
the number of data in each borehole log used for the analysis. The upper part of the table presents
communalities, eigenvalues and amounts of explained variance. Eigenvalucs are assumed to be important
if they are greater than or cqual to I these are indicated with an asterisk here, shown in Figure 3, and included
in the subsequent cluster analysis. The lower part of the table gives the factor loadings, the communality,
and the total amount of explained variance. Factor loadings greater than 0.5 are shown in bold. The sum of
the factor loadings squared is equal to the cigenvalue, which is the variance explained by a factor. Three
factors have an eigenvalue greater than 1. The total explained variance due to these three factors is 82%.
(An explanation of variables is given in Figure 1, a “c* at the end of a variable name denotes , filled up by
core measurements®).

Valid cases: 1216
COMMUNALITIES
Communal. Communal.
estimated calcul.
GR 1.0 0.96
K 1.0 0.96
U 1.0 0.80
Th 1.0 0.90
ThiK 1.0 0.64
K/U 1.0 0.83
WBDc 1.0 0.93
Vpcorec 1.0 0.86
porocorec 1.0 0.93
log(suscorec) 1.0 0.67
log(Rlong) 1.0 0.57
EIGENVALUES:
Variance Percentage
Factor  Eigenvalue percent (cumulative)
* 5.25 47.7 47.7
*2 1.98 18.0 65.7
*3 1.78 16.2 82.0
4 0.72 6.56 88.5
5 0.53 4.86 93.4
6 0.44 4.04 97 .4
7 0.17 1.52 98.9
8 0.08 0.77 99.7
9 0.01 0.17 99.9
10 0.01 0.11 99.9
11 0.00 0.03 100.0
VARIMAX FACTORLOADINGS:
Factors Commu-
3 2 1 nality
WBDc 0.95 -0.13 0.04 0.92
porocorec -0.95 0.13 -0.04 0.92
Vpcorec 0.91 -0.17 -0.06 0.85
log(Rlong) 0.69 -0.27 -0.16 0.57
GR -0.38 0.90 -0.05 0.95
Th -0.35 0.87 -0.13 0.89
K -0.34 0.85 0.33 0.95
log(suscorec) 0.12 0.80 0.07 0.66
U -0.28 0.66 -0.53 0.79
K/U -0.11 0.24 0.87 0.82
Th/iK 0.02 0.13 -0.78 0.64
Sum of squares 3.61 3.59 1.82 9.02
Percentage of variance 32.80 32.60 16.56 81.96
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Fig. 3 - Clusterlog, core-derived lithology, and factor logs. Factor3, Factor2, and Factorl are the factor logs as derived by factor analysis. Based on
these three factor logs, the multivariate cluster log (left column) was calculated. In the bottom part of the diagram, factor loadings with values greater
than 0.5 are shown simplified as plus or minus signs. The Factor2 log is mainly related to grain size (high loading of GR, Th, K, susceptibility, and
to a lesser extent uranium), whereas the Factor3 log is related to true porosity (high loading of porosity, density, sonic velocity, and resistivity). The
green curve overlain over Factor3 shows the difference between core porosity and neutron porosity (dphi) and thus is pointing to differences in clay
type/content. The red dots overlain over Factor2 represent measurements of silt content by Ehrmann (this volume). The Factorl log (loaded by the
ratios Th/K and K/U, and negatively to a small extent also by uranium content) is indicative of sediment source. The multivariate clusterlog (left
column) shows clear differences above and below 300 mbsf. Above 300 mbsf, green and black colours are dominating, whereas below this depth blue
and red colours occur often. As the clusters reflect different physical properties (¢f. Tab. 2) and the lithology is not changing systematically, this
behavior is pointing to a major change in source regions at 300 mbsf.
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Tab. 2 Back-calculated physical properties of clusters of the multivariate cluster analysis shown in figure 3. Bold numbers represent the average

value in cach cluster, and numbers in parentheses give the corresponding standard deviation (units se

Fig. 1), Each cluster has a different

combination of physical properties. For example, clusters | and 3 have identical GR values, but they have significantly different K/U and Th/
K ratios, pointing to different rock sources. (An explanation of variables is given in Fig. ).

cluster #  GR Th K U sus

2 (red)

4 (blue)

wBD

1 (black) 99(18) 7.8(1.8) 2.7(0.4) 2.0(0.6) 234(92) 2.09(0.19)

68(19) 5.7(1.7) 1.4(0.3) 2.0(0.9) 132(137) 2.32(0.20)

3 (green) 98(11) 7.9(1.3) 2.3(0.3) 2.6(0.5) 183¢101) 2.17(0.15)

50(13) 3.8(1.1) 1.2(0.3) 1.5(0.5) 76(107) 2.26(0.14)

poro Vp Riong K/U Th/K
36(13) 2.13(0.75) 2.6(1.1) 1.4(0.3)  2.9(0.5)
23(12) 3.11¢0.91)10.0(20.1) 0.8(0.2) 3.9(0.7)
32(9)  2.34(0.46) 3.3(3.0) 0.9(0.2) 3.5(0.6)
26(8) 2.57(0.53) 5.1(5.0) 0.7(0.2) 3.3(0.6)

minerals. This may lead to the alternative interpretation
thatFactor! isreflecting the source rock region by changing
ratios of the radiogenic elements. In the upper part of the
borehole down to 300 m, both ratios are negatively
correlated (Fig. 1), this antithetical relation is lost below
300 mbsf. This behavior is confirming the assumption,
that Factor! is more related to sediment provenance than
to clay type. Thus the background process reflected by
Factorl is the sediment source.The physical properties
density and porosity show the highest loadings for Factor3
with values of 0.95. Velocity and resistivity are closely
related to porosity and they are also contributing to Factor3.
As expected, the signs of the factor loadings for den and
phi are opposite. Thus, Factor3 is mainly responding to the
porosity of the formation and shows the combined effect
of porosity on density, velocity,and electrical resistivuty.
Overlain over Factor3 is the dphi-curve, the difference
between core porosity and neutron porosity. As mentioned
earlier this dphi-curve should reflect porosity-free clay-
type/contenteffects. Compared to the results from Ehrmann
on clay minerals (this volume), the dphi curve shows a
very similar behavior as the curve for smectite content.
With increasing depth, dphi and smectite are increasing,
the 350 mbsf depth marks a sharp change in both properties.

CLUSTERLOGS

The multivariate clusterlog, based on all three factor
logs, is shown in color at the left side of figure 3, together
with the lithological column. The mean and standard
deviation of the physical properties for each cluster are
given in table 2. Each cluster represents intervals where
the physical and chemical rock properties are presumably
similar. Four orsix significant clusters could be derived by
dendrogram evaluation; for clarity, only the four-cluster
solutionisshownin figure 2. Each cluster in the cluster log
can be seen as a statistically determined electrofacies (or
petrofacies) as defined by Serra (1984). This clustering
facilitates subdivision of the borehole into logging units
that can be compared to lithology, porosity, grain size, or
provenance.

As mentioned above, Factor2 mainly reflects grain size

and thus lithological changes. For direct comparison of
Factor2 with the lithology column, a univariate clusterlog
was calculated, based solely on Factor2 (Fig. 4). The
backcalculated physical properties within each cluster of
this univariate cluster analysis are given in table 3. As can
be seen in table 3, Factor?2 is clearly differentiating the 4
clusters. The average silt content reflected by the clusters is
demonstrated in the box and whisker plotinfigure 5. Cluster
4 is characterised by the lowest silt content coinciding with
lowest gamma ray properties and also lowest density,
velocity, and resistivity values, obviously representing
diamictites. The highestsilt content is reflected by cluster 3,
the physical properties (Tab. 3) show high gamma ray as
well as high velocity and susceptibility values, and a high
Th/K ratio, pointing to a mudstone. In figure 4, different
colours in the univariate clusterlog are directly related to
different silt contents and thus to different grain sizes.
Coarse grained sections (low silt contents) are graphically
enhanced by the horizontal bars, which are based on the blue
and black colours of the clusterlog. Agreement between the
litho log and clusterlog is best in the lower part of the
borehole, below 300 mbsf. In the uppermost section of the
borehole (above 150 mbsf), sand and diamictite seem to be
overestimated in the lithology log.

RESULTS AND DISCUSSION

By means of factor and cluster analysis, it was possible
to reduce the dimensionality of the CRP-2A downhole
logging data without significant loss of information. The
resulting set of factor and cluster logs makes subsequent
evaluations and interpretations much easier. The analyses
resulted in three factor logs. We conclude that Factor3 is
a good proxy for true overall porosity, and Factor2 is a
good proxy forlithology and grain-size variations. Factor1
contains information primarily related to sediment source
and, to a lesser extent, clay type. Clay type and clay
content is also reflected by Factor3 because it shows a
close correlation to the difference between core porosity
and neutron porosity (dphi). As stated earlier, the factor
logs should be independent of each other by definition.
But obviously the rock properties themselves are not
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Fig. 4 - Factor2 log with detailed interpretation. The left column shows a univariate clusterlog that was calculated solely by using
the Factor2 log. Note that the colours shown here do not correspond to those shown in figure 3. Because the Factor2 log responds mainly
to grain-size changes, this univariate clusterlog represents different grain sizes by different colours. Grain size decreases from blue over black and red
to green. Accordingly, blue and black represent diamictites and coarse sandstones, whereas red and green represent siltstones and mudstones. The
higher proportion of coarse grained sediments in the lower part of the borehole is optically enhanced by the horizontal bars, which are based on the
blue and black colours of the univariate clusterlog. The ,,V* at the right margin denotes a massive volcanic ash layer, a ,,T* denotes Temperature
anomalies detected by downhole measurements (cf. Biicker et al., this volume).
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Tab. 3 - Backecalculated physical properties of clusters of the univariate cluster analysis shown in figure 4. This univariate analysis contrasts with
the multivariat analysis of Table 2. Bold numbers represent the average value in each cluster, and numbers in parentheses give the corresponding
standard deviation (units see Fig. 1). Each cluster has a different combination of physical properties. Due to the relation between Factor2 and silt content
(¢f. Fig. 4), grain size is decreasing from cluster 4 to clusters 1 and 2 to cluster 3. This means that cluster 4 generally represents diamictites whereas
cluster 3 consists mainly of mudstones. (An explanation of variables is given in Fig. 1).

cluster # GR Th K U sus WBD poro Vp Rlong K/U Th/K  factor2
1 (black) 59(16) 4.6(1.3) 1.4(0.5) 1.6(0.4) 103(122) 2.25(0.14) 27(8) 2.64(0.58) 5.8(6.9) 0.92(0.28) 3.3(0.6) 04
2 (red) 82(21) 6.6(1.7) 1.9(0.6) 2.1(0.6) 179(116) 2.25(0.17) 27(10) 2.63(0.76) 6.8(14.9) 0.95(0.32) 3.5(0.6) 0
3 (green) 96(19) 8.1(1.7) 2.1(0.5) 2.6(0.8) 179(128) 2.20(0.26) 30(16) 2.74(0.99) 6.0(16.4) 0.84(0.28) 3.9(0.7) 0,5
4 (blue) 41(10)  3.0(0.8) 1.0(0.3) 1.2(0.3) 39(43)  2.15(0.12) 33(17) 2.20(0.41) 3.2(1.8) 0.88(0.25) 3.0(0.6) 1

uncorrelated in this case, resulting in a correlation
coefficient of —0.56 between Factor]l and Factor3, which
means that these factors are sharing some background
information.

Thechemical and sedimentological core measurements
from CRP-2 can be used to calibrate the results from the
statistical evaluations of downhole logs. This step, which
enhances quantitative interpretation of the factor logs and
clusters, is beyond the scope of the present study; it will be
followed up in further studies.

Based onthe multivariate clusterlog (Fig. 3), which is
taking into account all downhole logs of Figure 1, the hole
can be divided into the following 10 logging units or
statistical electrofacies (corresponding cluster values are
given in table 2):

Unit 1: 0 - 40 mbsf, mainly cluster 1

Unit2:40 - 158 mbsf, mainly cluster 3, with contributions
by cluster 1

Unit3: 158 - 200 mbsf, mainly cluster 3, with contributions
by clusters 4 and 2

Unit 4: 200 - 275 mbsf, mainly cluster 3

Unit5:275 - 327 mbsf, mainly cluster4, with contributions
by cluster 3

Unit 6: 327 - 350 mbsf, mainly cluster 3

Unit7:350- 445 mbsf, mainly cluster4, with contributions
by cluster 2

Unit 8: 445 - 492 mbsf, mainly cluster 2, with contributions
by clusters 4 and 3

Unit 9: 492 - 560 mbsf, mainly cluster 4, with contributions
by cluster 2

Unit 10: 560 - 624 mbsf, mainly cluster 2, with contributions

by clusters 4 and 3.

This cluster analysis is a helpful tool for reliable,
reproducible, and objective definition of logging units.
Brink etal. (this volume) determined and described 8 log-
based units due to changes in two or more of the downhole
logs. Though not clearly visible by the logging unit
definition, it must be stated that the 300 mbsf unconformity
is a main unconformity which is marked by a suite of
parameters showing dramatic changes at this depth. These
parameters are the clay mineralogy (Ehrmann, this volume),
the dip angle in seismic lines (Henrys et al., this volume),
the lithology of clasts (Passchier, this volume), the

N
o

silt content (%)

-
cluster #

Fig. 5 - Box-and-whisker plot of silt content according to the four clusters of
the univariate cluster analysis shown in figure 4. This plot demonstrates that
cluster 4 (blue) represents the lowest silt content and cluster 3 (green)
indicates the highestsiltcontent. Sand contentexhibits the opposite behavior.

petrology (Talarico et al., this volume), and the average
diatom abundance (Scherer et al., this volume). This
overall change in physical, sedimentological, and structural
properties, as itisrelated to a change in logging properties,
is summarised in the multivariate cluster log. Thus the
multivariate cluster log shows not only changes in lithology
and grain size but also changes in provenance and clay
type. A further subdivision of the clusters may show more
subtle changes.

Our statistically derived logging units show a fairly
good agreement with the subjectively derived logging
units of Brink et al. (this volume), providing an independent
confirmation of the overall sedimentary structure of CRP-
2A. The good correlation between this multivariate
clusterlog and the petrofacies log by Smellie (this volume)
confirms that the multivariate clusterlog is reflecting
petrofacies and thus provenance changes.

The factor and cluster analyses identify and emphasise
different aspects of CRP-2A physical and chemical
properties. The factor analysis gives factor logs that provide
continuous records of downhole variations in porosity,
lithology, grain size, and clay type. The cluster analysis, in
contrast, identifies discrete logging units which indicate
downhole changes in source region provenance.
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