Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Chiessi, Cristiano Mazur; Mulitza, Stefan; Mollenhauer, Gesine; Silva, Juliana Braga; Groeneveld, Jeroen; Prange, Matthias (2015): Stable oxygen isotope and Mg/Ca data of Globigerinoides ruber white, water stable oxygen isotope data, SST and MAT records of sediment core GeoB6211-2. PANGAEA, https://doi.org/10.1594/PANGAEA.847352, Supplement to: Chiessi, CM et al. (2015): Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1. Climate of the Past, 11(6), 915-929, https://doi.org/10.5194/cp-11-915-2015

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling–Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.
Coverage:
Latitude: -32.505200 * Longitude: -50.242700
Date/Time Start: 1999-12-12T17:21:00 * Date/Time End: 1999-12-12T17:21:00
Minimum DEPTH, sediment/rock: 0.86 m * Maximum DEPTH, sediment/rock: 5.83 m
Event(s):
GeoB6211-2 * Latitude Start: -32.505200 * Longitude Start: -50.242700 * Latitude End: -32.505200 * Longitude End: -50.242700 * Date/Time: 1999-12-12T17:21:00 * Elevation Start: -657.0 m * Elevation End: -657.0 m * Recovery: 7.74 m * Location: Argentine Basin * Campaign: M46/2 * Basis: Meteor (1986) * Method/Device: Gravity corer (Kiel type) (SL)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DEPTH, sediment/rockDepth sedmChiessi, Cristiano MazurGeocode
2AGEAgeka BPChiessi, Cristiano MazurcalibratedGeocode
3Globigerinoides ruber white, δ18OG. ruber w δ18O‰ PDBChiessi, Cristiano MazurIsotope ratio mass spectrometry[per mil, VPDB], sensu stricto, 250-350 µm fraction
4Globigerinoides ruber white, Magnesium/Calcium ratioG. ruber w Mg/Cammol/molChiessi, Cristiano MazurICP-OES, Inductively coupled plasma - optical emission spectrometry[per mil, VPDB], sensu stricto, 250-350 µm fraction
5Sea surface temperatureSST°CChiessi, Cristiano MazurCalculated from Mg/Ca ratios (Anand et al., 2003)G. ruber white sensu stricto 250-350 µm fraction
6δ18O, waterδ18O H2O‰ SMOWChiessi, Cristiano MazurIce volume corrected[per mil, VSMOW] continental-ice-volume-corrected surface sea water based on Mulitza et al. (2003)
7Temperature, annual meanMAT°CMollenhauer, GesineCalculated from MBT'/CBT (Peterse et al., 2012)
Size:
948 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML