Data Description

  RIS BibTeX
Citation:
Rokitta, SD; Rost, B (2012): Seawater carbonate chemistry and effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi strains RCC 1216 and 1217 during experiments, 2012. doi:10.1594/PANGAEA.777432,
Supplement to: Rokitta, Sebastian D; Rost, Björn (2012): Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57(2), 607-618, doi:10.4319/lo.2012.57.2.0607
Abstract:
The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Species *SpeciesRokitta, Sebastian D *
2Experimental treatment *Exp trtmRokitta, Sebastian D *
3Salinity *SalRokitta, Sebastian D *
4Temperature, water *Temp°CRokitta, Sebastian D *
5Nitrate *NO3µmol/lRokitta, Sebastian D *
6Phosphate *PO4µmol/lRokitta, Sebastian D *
7Radiation, photosynthetically active *PARµE/m2/sRokitta, Sebastian D *
8Light:Dark cycle *L:Dhh:hhRokitta, Sebastian D *
9Carbon dioxide, partial pressure *pCO2PaRokitta, Sebastian D *Estimated *Treatment
10Carbon dioxide, partial pressure *pCO2PaRokitta, Sebastian D *Calculated using CO2SYS *Measured
11Carbon dioxide, partial pressure, standard deviation *pCO2 std dev±Rokitta, Sebastian D *
12pH *pHRokitta, Sebastian D *pH meter (WTW pH 3000) *NBS scale
13pH, standard deviation *pH std dev±Rokitta, Sebastian D *
14Alkalinity, total *ATµmol/kgRokitta, Sebastian D *Alkalinity, Gran titration (Gran, 1950) *
15Alkalinity, total, standard deviation *AT std dev±Rokitta, Sebastian D *
16Total carbon *TCµmol/kgRokitta, Sebastian D *Auto-analyzer, Technicon Traacs 800 *
17Carbon, inorganic, total, standard deviation *TIC std dev±Rokitta, Sebastian D *
18Bicarbonate ion *[HCO3]-µmol/kgRokitta, Sebastian D *Calculated using CO2SYS *
19Bicarbonate ion, standard deviation *[HCO3]- std dev±Rokitta, Sebastian D *
20Carbonate ion *[CO3]2-µmol/kgRokitta, Sebastian D *Calculated using CO2SYS *
21Carbonate ion, standard deviation *[CO3]2- std dev±Rokitta, Sebastian D *
22Calcite saturation state *Omega CalRokitta, Sebastian D *Calculated using CO2SYS *
23Calcite saturation state, standard deviation *Omega Cal std dev±Rokitta, Sebastian D *
24Growth rate *µ#/dayRokitta, Sebastian D *Calculated, see reference(s) *
25Growth rate, standard deviation *µ std dev±Rokitta, Sebastian D *
26Particulate inorganic carbon content per cell *PIC contpg/#Rokitta, Sebastian D *Mass spectrometer SL 20-20 (SerCon) *
27Particulate inorganic carbon per cell, standard deviation *PIC in cell std dev±Rokitta, Sebastian D *
28Particulate organic carbon content per cell *POC contpg/cellRokitta, Sebastian D *Mass spectrometer SL 20-20 (SerCon) *
29Particulate organic carbon content per cell, standard deviation *POC cont std dev±Rokitta, Sebastian D *
30Particulate organic nitrogen per cell *PON cellpg/cellRokitta, Sebastian D *Mass spectrometer SL 20-20 (SerCon) *
31Particulate organic nitrogen per cell, standard deviation *PON cell std dev±Rokitta, Sebastian D *
32Particulate inorganic carbon/particulate organic carbon ratio *PIC/POC ratioRokitta, Sebastian D *calculated *
33Particulate inorganic carbon/particulate organic carbon ratio, standard deviation *PIC/POC ratio std dev±Rokitta, Sebastian D *
34Particulate organic carbon/particulate organic nitrogen ratio *POC/PONRokitta, Sebastian D *calculated *
35Particulate organic carbon/particulate organic nitrogen ratio, standard deviation *POC/PON std dev±Rokitta, Sebastian D *
36Production of particulate organic carbon *POC prodpg/cell/dayRokitta, Sebastian D *calculated *
37Particulate organic carbon, production, standard deviation *POC-prod std dev±Rokitta, Sebastian D *
38Particulate inorganic carbon production per day *PIC prodpg/cell/dayRokitta, Sebastian D *calculated *
39Particulate inorganic carbon, production, standard deviation *PIC prod std dev±Rokitta, Sebastian D *
40Total particulate carbon production *TPC prodpg/cell/dayRokitta, Sebastian D *Mass spectrometer SL 20-20 (SerCon) *
41Total particulate carbon production, standard deviation *TPC prod std dev±Rokitta, Sebastian D *
42Production of particulate organic nitrogen *PON prodpg/cell/dayRokitta, Sebastian D *calculated *
43Particulate organic nitrogen production, standard deviation *PON prod, std dev±Rokitta, Sebastian D *
44Chlorophyll a *Chl apg/cellRokitta, Sebastian D *Pigments, Turner fluorometer *
45Chlorophyll a, standard deviation *Chl a std dev±Rokitta, Sebastian D *
46Chlorophyll a/particulate organic carbon ratio *Chl a/POCRokitta, Sebastian D *
47Chlorophyll a/particulate organic carbon ratio, standard deviation *Chl a/POC std dev±Rokitta, Sebastian D *
48Bicarbonate uptake/net fixation ratio *[HCO3]- upt/net fixmol/molRokitta, Sebastian D *
49Bicarbonate uptake/net fixation ratio, standard deviation *[HCO3]- upt/net fix std dev±Rokitta, Sebastian D *
50Carbonate system computation flag *CSC flagNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
51pH *pHNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Total scale; Calculated from means
52Carbon dioxide *CO2µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
53Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
54Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
55Bicarbonate ion *[HCO3]-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
56Carbonate ion *[CO3]2-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
57Total carbon *TCµmol/kgRokitta, Sebastian D *Calculated using CO2SYS *Calculated from means
58Aragonite saturation state *Omega ArgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
59Calcite saturation state *Omega CalNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Calculated from means
License:
Size:
536 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML