Data Description

  RIS BibTeX
Citation:
Kranz, SA et al. (2010): Seawater carbonate chemistry and combined physiological effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101 during experiments, 2010. doi:10.1594/PANGAEA.777430,
Supplement to: Kranz, Sven A; Levitan, Orly; Richter, Klaus-Uwe; Prasil, O; Beran-Frank, Ilana; Rost, Björn (2010): Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses. Plant Physiology, 154, 334-345, doi:10.1104/pp.110.159145
Abstract:
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum(IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses ofTrichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 µatm) and irradiance (50 and 200 µmol photons m-2 s-1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3- was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2treatment under high light. Light-dependent oxygen uptake was only detected underlow pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementarystudy looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Comment *CommentKranz, Sven A *
2Salinity *SalKranz, Sven A *
3Temperature, water *Temp°CKranz, Sven A *
4Radiation, photosynthetically active *PARµE/m2/sKranz, Sven A *
5Experimental treatment *Exp trtmKranz, Sven A *
6Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmKranz, Sven A *Calculated using CO2SYS *
7Carbon dioxide *CO2µmol/kgKranz, Sven A *
8Carbon dioxide, standard deviation *CO2 std dev±Kranz, Sven A *Calculated using CO2SYS *
9Alkalinity, total *ATµmol/kgKranz, Sven A *Alkalinity, Gran titration (Gran, 1950) *
10Alkalinity, total, standard deviation *AT std dev±Kranz, Sven A *
11pH *pHKranz, Sven A *pH meter (Metrohm electrodes) *NBS scale
12pH, standard deviation *pH std dev±Kranz, Sven A *
13Total carbon *TCµmol/kgKranz, Sven A *Calculated using CO2SYS *
14Carbon, inorganic, total, standard deviation *TIC std dev±Kranz, Sven A *
15Growth rate *µ#/dayKranz, Sven A *Calculated, see reference(s) *
16Growth rate, standard deviation *µ std dev±Kranz, Sven A *
17Particulate organic carbon content per cell *POC contpg/cellKranz, Sven A *Mass spectrometer ANCA-SL 20-20 Europa Scientific *
18Particulate organic carbon content per cell, standard deviation *POC cont std dev±Kranz, Sven A *
19Particulate organic nitrogen per cell *PON cellpmol/cellKranz, Sven A *Mass spectrometer ANCA-SL 20-20 Europa Scientific *
20Particulate organic nitrogen per cell, standard deviation *PON cell std dev±Kranz, Sven A *
21Particulate organic phosphorus per cell *POP cellpmol/#Kranz, Sven A *Mass spectrometer ANCA-SL 20-20 Europa Scientific *
22Particulate organic phosphorus per cell, standard deviation *POP cell, std dev±Kranz, Sven A *
23Carbon/Nitrogen ratio *C/NKranz, Sven A *calculated *
24Carbon/Nitrogen ratio, standard deviation *C/N std dev±Kranz, Sven A *
25Chlorophyll a *Chl apg/cellKranz, Sven A *
26Chlorophyll a, standard deviation *Chl a std dev±Kranz, Sven A *
27Production of particulate organic carbon per cell *POC prodµmol/#/dayKranz, Sven A *Calculated, see reference(s) *
28Particulate organic carbon, production, standard deviation *POC-prod std dev±Kranz, Sven A *
29Production of particulate organic nitrogen *PON prodpg/cell/dayKranz, Sven A *Calculated, see reference(s) *
30Particulate organic nitrogen production, standard deviation *PON prod, std dev±Kranz, Sven A *
31Gross oxygen evolution, per chlorophyl a *O2 ev/Chlµmol/mg/hKranz, Sven A *see reference(s) *
32Gross oxygen evolution, standard deviation *O2 ev/Chl std dev±Kranz, Sven A *
33Oxygen consumption per chlorophyl a *O2 con/Chlµmol/mg/hKranz, Sven A *see reference(s) *
34Oxygen consumption, standard deviation *O2 con std dev±Kranz, Sven A *
35Fixation of carbon in chlorophyll *C/Chl fixmg/mg/hKranz, Sven A *
36Fixation of carbon in chlorophyll, standard deviation *C/Chl std dev±Kranz, Sven A *
37Bicarbonate uptake in chlorophyll *HCO3 upt/Chlµmol/mg/hKranz, Sven A *
38Bicarbonate uptake in chlorophyll, standard deviation *HCO3 upt/Chl std dev±Kranz, Sven A *
39Carbon dioxide uptake in chlorophyll *CO2 upt/Chlµmol/mg/hKranz, Sven A *
40Carbon dioxide uptake in chlorophyll, standard deviation *CO2 upt/Chl std dev±Kranz, Sven A *
41Time in hours *TimehKranz, Sven A *
42Nitrogen fixation rate in chlorophyl a *N2 fix/Chlnmol/µg/hKranz, Sven A *Determined by acetylene reduction assay using a gas chromatograph *
43Nitrogen fixation rate, standard deviation *N2 fix std dev±Kranz, Sven A *
44Carbonate system computation flag *CSC flagNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
45pH *pHNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Total scale
46Carbon dioxide *CO2µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
47Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
48Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
49Bicarbonate ion *[HCO3]-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
50Carbonate ion *[CO3]2-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
51Total carbon *TCµmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
52Aragonite saturation state *Omega ArgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
53Calcite saturation state *Omega CalNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
License:
Size:
1788 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML