Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Raitzsch, Markus; Dueñas-Bohórquez, Adriana; Reichart, Gert-Jan; de Nooijer, Lennart Jan; Bickert, Torsten (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera (Heterostegina depressa and Ammonia tepida) and seawater carbonate chemistry, 2010 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.758073, Supplement to: Raitzsch, M et al. (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated saturation state. Biogeosciences, 7(3), 869-881, https://doi.org/10.5194/bg-7-869-2010

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.
Keyword(s):
Ammonia tepida; Benthos; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Chromista; Foraminifera; Heterostegina depressa; Heterotrophic prokaryotes; Laboratory experiment; Laboratory strains; North Atlantic; Single species
Funding:
Seventh Framework Programme (FP7), grant/award no. 211384: European Project on Ocean Acidification
Sixth Framework Programme (FP6), grant/award no. 511106: European network of excellence for Ocean Ecosystems Analysis
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Experimental treatmentExp treatRaitzsch, Markus
IdentificationIDRaitzsch, Markus
Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
SalinitySalRaitzsch, Markus
10 Temperature, waterTemp°CRaitzsch, Markus
11 Alkalinity, totalATµmol/kgRaitzsch, Markus
12 Alkalinity, total, standard deviationAT std dev±Raitzsch, Markus
13 Carbon, inorganic, dissolvedDICµmol/kgRaitzsch, Markus
14 Carbon, inorganic, dissolved, standard deviationDIC std dev±Raitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
15 CalciumCa2+mmol/kgRaitzsch, Markus
16 Calcium, standard deviationCa std dev±Raitzsch, Markus
17 Carbon dioxideCO2µmol/kgRaitzsch, Markus
18 Carbon dioxide, standard deviationCO2 std dev±Raitzsch, Markus
19 Calcite saturation stateOmega CalRaitzsch, MarkusCalculated
20 Calcite saturation state, standard deviationOmega Cal std dev±Raitzsch, Markus
21 Carbonate system computation flagCSC flagNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
22 pHpHNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)Total scale
23 Carbon dioxideCO2µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
24 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
25 Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
26 Bicarbonate ion[HCO3]-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
27 Carbonate ion[CO3]2-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
28 Aragonite saturation stateOmega ArgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
29 Calcite saturation stateOmega CalNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
30 Magnesium/Calcium ratioMg/CaRaitzsch, MarkusSeawater
31 Magnesium/Calcium ratio, standard deviationMg/Ca std dev±Raitzsch, MarkusSeawater
32 Strontium/Calcium ratioSr/CaRaitzsch, MarkusSeawater
33 Strontium/Calcium ratio, standard deviationSr/Ca std dev±Raitzsch, MarkusSeawater
34 Heterostegina depressa, magnesium/calcium ratioH. depressa Mg/Cammol/molRaitzsch, Markus
35 Heterostegina depressa, magnesium/calcium ratio, standard deviationH. depressa Mg/Ca std dev±Raitzsch, Markus
36 Ammonia tepida, magnesium/calcium ratioA. tepida Mg/Cammol/molRaitzsch, Markus
37 Ammonia tepida, magnesium/calcium ratio, standard deviationA. tepida Mg/Ca std dev±Raitzsch, Markus
38 Heterostegina depressa, incorporation, magnesiumH. depressa DMgRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
39 Heterostegina depressa, incorporation, magnesium, standard deviationH. depressa DMg std dev±Raitzsch, Markus
40 Ammonia tepida, incorporation, magnesiumA. tepida DMgRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
41 Ammonia tepida, incorporation, magnesium, standard deviationA. tepida DMg std dev±Raitzsch, Markus
42 Heterostegina depressa, strontium/calcium ratioH. depressa Sr/Cammol/molRaitzsch, Markus
43 Heterostegina depressa, strontium/calcium ratio, standard deviationH. depressa Sr/Ca std dev±Raitzsch, Markus
44 Ammonia tepida, strontium/calcium ratioA. tepida Sr/Cammol/molRaitzsch, Markus
45 Ammonia tepida, strontium/calcium ratio, standard deviationA. tepida Sr/Ca std dev±Raitzsch, Markus
46 Heterostegina depressa, incorporation, strontiumH. depressa DSrRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
47 Heterostegina depressa, incorporation, strontium, standard deviationH. depressa DSr std dev±Raitzsch, Markus
48 Ammonia tepida, incorporation, strontiumA. tepida DSrRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
49 Ammonia tepida, incorporation, strontium, standard deviationA. tepida DSr std dev±Raitzsch, Markus
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
304 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Exp treat

ID

H. depressa
(Abundance estimate)

H. depressa
(Abundance estimate)

H. depressa
(Abundance estimate)

A. tepida
(Abundance estimate)

A. tepida
(Abundance estimate)

A. tepida
(Abundance estimate)

Sal
10 
Temp [°C]
11 
AT [µmol/kg]
12 
AT std dev [±]
13 
DIC [µmol/kg]
14 
DIC std dev [±]
(Geo-Las 200Q 193 nm Excimerla...)
15 
Ca2+ [mmol/kg]
16 
Ca std dev [±]
17 
CO2 [µmol/kg]
18 
CO2 std dev [±]
19 
Omega Cal
(Calculated)
20 
Omega Cal std dev [±]
21 
CSC flag
(Calculated using seacarb afte...)
22 
pH
(Total scale, Calculated using...)
23 
CO2 [µmol/kg]
(Calculated using seacarb afte...)
24 
pCO2water_SST_wet [µatm]
(Calculated using seacarb afte...)
25 
fCO2water_SST_wet [µatm]
(Calculated using seacarb afte...)
26 
[HCO3]- [µmol/kg]
(Calculated using seacarb afte...)
27 
[CO3]2- [µmol/kg]
(Calculated using seacarb afte...)
28 
Omega Arg
(Calculated using seacarb afte...)
29 
Omega Cal
(Calculated using seacarb afte...)
30 
Mg/Ca
(Seawater)
31 
Mg/Ca std dev [±]
(Seawater)
32 
Sr/Ca
(Seawater)
33 
Sr/Ca std dev [±]
(Seawater)
34 
H. depressa Mg/Ca [mmol/mol]
35 
H. depressa Mg/Ca std dev [±]
36 
A. tepida Mg/Ca [mmol/mol]
37 
A. tepida Mg/Ca std dev [±]
38 
H. depressa DMg
(Geo-Las 200Q 193 nm Excimerla...)
39 
H. depressa DMg std dev [±]
40 
A. tepida DMg
(Geo-Las 200Q 193 nm Excimerla...)
41 
A. tepida DMg std dev [±]
42 
H. depressa Sr/Ca [mmol/mol]
43 
H. depressa Sr/Ca std dev [±]
44 
A. tepida Sr/Ca [mmol/mol]
45 
A. tepida Sr/Ca std dev [±]
46 
H. depressa DSr
(Geo-Las 200Q 193 nm Excimerla...)
47 
H. depressa DSr std dev [±]
48 
A. tepida DSr
(Geo-Las 200Q 193 nm Excimerla...)
49 
A. tepida DSr std dev [±]
Experiment IGroup 1156636.224.0244012320871024.8470.028246252.760.11158.1110.10349.93348.811825.61251.303.945.985.170.030.01780.00042143.3411.890.030.004.820.350.270.02
Experiment IGroup 21510735.824.024361122085749.5340.374243225.390.51158.1110.06348.02346.911824.58250.363.935.985.560.090.00930.00027145.568.620.030.002.660.260.280.03
Experiment IGroup 3155535.624.024005020593413.7600.233237107.580.29158.1010.14350.47349.361806.21242.653.825.805.960.140.00640.00005151.578.340.030.001.980.100.310.02
Experiment IGroup 4157735.624.023848020464718.4390.2422341510.040.56158.1010.13350.19349.071795.81240.063.785.746.200.330.00480.00014155.0011.200.030.001.610.120.330.02
Experiment IIGroup 1298635.218.0238529211125.4270.01720142.510.10158.0912.50366.34365.081901.90196.603.034.695.080.020.01540.000622.410.510.000.002.560.680.170.04
Experiment IIGroup 2256435.318.02378232105169.7860.00520034.510.10158.0912.52366.98365.731896.87195.613.014.665.100.100.00850.000101.780.460.000.001.350.190.160.02
Experiment IIGroup 3308835.218.023633120931314.1460.42819846.460.38158.0912.52366.88365.631887.20193.282.984.615.190.210.00590.000011.600.290.000.000.910.050.160.01
Experiment IIGroup 43010735.318.023853921111118.1380.53920068.370.47158.0912.53367.31366.051901.98196.493.034.685.300.280.00460.000113.651.950.010.000.780.120.170.03