Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent high- and low-latitude control of the northwest African hydrological balance

This article has been updated

Abstract

The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard–Oeschger and Heinrich events2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial–interglacial cycle1,3,4,5, or lack an accurate chronology6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere–ocean–vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average precipitation rates, surface wind direction and strength over the northeastern Atlantic for boreal winter and summer.
Figure 2: Palaeoenvironmental records of the NGRIP ice core, MD95 2042 and GeoB7920 for the last 120 kyr BP.
Figure 3: Model–data comparison of the northern Africa humidity and vegetation cover during the last 120 kyr BP.
Figure 4: Model–data comparison of the northern Africa humidity and vegetation cover from 65 to 15 kyr BP.

Similar content being viewed by others

Change history

  • 18 September 2008

    The name of the first affiliation has changed, and has been corrected for all versions of this Letter.

References

  1. Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science 313, 803–807 (2006).

    Article  Google Scholar 

  2. Broecker, W. S. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science 300, 1519–1522 (2003).

    Article  Google Scholar 

  3. Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 19, 189–211 (2000).

    Article  Google Scholar 

  4. Street-Perrott, F. A. & Perrott, R. A. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation. Nature 343, 607–612 (1990).

    Article  Google Scholar 

  5. deMenocal, P. B. et al. Abrupt onset and termination of the African Humid period: Rapid climate response to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  6. Zhao, M., Mercer, J. L., Eglinton, G., Higginson, M. J. & Huang, C.-Y. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa. Org. Geochem. 37, 72–97 (2006).

    Article  Google Scholar 

  7. Schefuß, E., Schouten, S., Jansen, J. H. F. & Sinninghe Damsté, J. S. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422, 418–421 (2003).

    Article  Google Scholar 

  8. Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years of West African Monsoon and Ocean thermal evolution. Science 316, 1303–1307 (2007).

    Article  Google Scholar 

  9. Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).

    Article  Google Scholar 

  10. Jolly, D., Harrison, S. P., Damnati, B. & Bonnefille, R. Simulated climate and biomes of Africa during the late quaternary: Comparison with pollen and lake status data. Quat. Sci. Rev. 17, 629–657 (1998).

    Article  Google Scholar 

  11. Renssen, H., Brovkin, V., Fichefet, T. & Goosse, H. Simulation of the Holocene climate evolution in Northern Africa: The termination of the African Humid Period. Quat. Int. 150, 95–102 (2006).

    Article  Google Scholar 

  12. Liu, Z. et al. Simulating the transient evolution and abrupt change of Northern Africa atmosphere-ocean-terrestrial ecosystem in the Holocene. Quat. Sci. Rev. 26, 1818–1837 (2007).

    Article  Google Scholar 

  13. Liu, Z., Wang, Y., Gallimore, R., Notaro, M. & Prentice, I. C. On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback. Geophys. Res. Lett. 33, L22709 (2006).

    Article  Google Scholar 

  14. Adegbie, A. T., Schneider, R. R., Rohl, U. & Wefer, G. Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 323–333 (2003).

    Article  Google Scholar 

  15. deMenocal, P. B., Ortiz, J., Guilderson, T. & Sarnthein, M. Coherent high- and low-latitude climate variability during the Holocene Warm Period. Science 288, 2198–2202 (2000).

    Article  Google Scholar 

  16. Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K. & Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, 193–196 (1981).

    Article  Google Scholar 

  17. Parkin, D. W. & Shackleton, N. J. Trade wind and temperature correlations down a deep-sea core off the Saharan coast. Nature 245, 455–457 (1973).

    Article  Google Scholar 

  18. Weltje, G. J. & Prins, M. A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedim. Geol. 162, 39–62 (2003).

    Article  Google Scholar 

  19. Holz, C., Stuut, J. b. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: Implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2005).

    Article  Google Scholar 

  20. Weltje, G. J. & Prins, M. A. Genetically meaningful decomposition of grain-size distributions. Sedim. Geol. 202, 409–424 (2007).

    Article  Google Scholar 

  21. Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).

    Article  Google Scholar 

  22. Chapman, M. R., N J, S. & Duplessy, J.-C. Sea surface temperature variability during the last glacial-interglacial cycle: Assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 157, 1–25 (2000).

    Article  Google Scholar 

  23. Bard, E. Abrupt climate changes over millennial timescales: Climate shock. Phys. Today 55, 32–38 (2002).

    Article  Google Scholar 

  24. Claussen, M., Fohlmeister, J., Ganopolski, A. & Brovkin, V. Vegetation dynamics amplifies precessional forcing. Geophys. Res. Lett. 33, L09709 (2006).

    Article  Google Scholar 

  25. Arz, H. W., Lamy, F., Pätzold, J., Müller, P. J. & Prins, M. Mediterranean moisture source for an early-Holocene humid period in the Northern Red Sea. Science 300, 118–121 (2003).

    Article  Google Scholar 

  26. Claussen, M., Ganopolski, A., Brovkin, V., Gerstengarbe, F. W. & Werner, P. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events. Clim. Dyn. 21, 361–370 (2003).

    Article  Google Scholar 

  27. Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    Article  Google Scholar 

  28. Combourieu Nebout, N. et al. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 kyr. Geology 30, 863–866 (2002).

    Article  Google Scholar 

  29. Moreno, A. et al. Links between marine and atmospheric processes oscillating on a millennial time-scale. A multi-proxy study of the last 50,000 yr from the Alboran Sea (Western Mediterranean Sea). Quat. Sci. Rev. 24, 1623–1636 (2005).

    Article  Google Scholar 

  30. NGRIP-Members.High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

Download references

Acknowledgements

We thank the crew and participants of Meteor cruise M53/1. The authors acknowledge G. J. Weltje for providing the End-Member Model Algorithm and the constructive discussion with A. Ganopolski, E. Bauer, V. Brovkin, H. Arz and M. Prins. M. Segl is thanked for supervising the stable isotope analyses. This research was supported by the Deutsche Forschungsgemeinschaft as part of the DFG Research Center for Ocean Margins of the University of Bremen.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work, data analysis and interpretation of the proxy data were carried out by R.T., J.B.W.S., T.B., F.L. and U.R. The CLIMBER model simulations were set up and carried out by M.C., J.F. and A.J.

Corresponding authors

Correspondence to Rik Tjallingii or Martin Claussen.

Supplementary information

Supplementary Information

Supplementary figures S1-S7 (PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjallingii, R., Claussen, M., Stuut, JB. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nature Geosci 1, 670–675 (2008). https://doi.org/10.1038/ngeo289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing