Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climatic controls on central African hydrology during the past 20,000 years

Abstract

Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation1,2. Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt3,4. Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited5. Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview map showing the main climatological features of Africa and the adjacent Atlantic Ocean.
Figure 2: Deglacial-Holocene records of northern high-latitude and central African climate and SST variations in the tropical and subtropical Atlantic.

Similar content being viewed by others

References

  1. Kutzbach, J. E. & Liu, Z. Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440–444 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Partridge, T. C., DeMenocal, P. B., Lorentz, S. A., Paiker, M. J. & Vogel, J. C. Orbital forcing of climate over South Africa: a 200,000 year rainfall record from the Pretoria Saltpan. Quat. Sci. Rev. 16, 1125–1133 (1997)

    Article  ADS  Google Scholar 

  3. Hastenrath, S. Decadal-scale changes of the circulation in the tropical Atlantic sector associated with Sahel drought. Int. J. Climatol. 10, 459–472 (1990)

    Article  Google Scholar 

  4. Street-Perrott, F. A. & Perrott, R. A. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation. Nature 343, 607–612 (1990)

    Article  ADS  Google Scholar 

  5. Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 19, 189–211 (2000)

    Article  ADS  Google Scholar 

  6. Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Paleobot. Palynol. 99, 157–187 (1998)

    Article  Google Scholar 

  7. Sanga-Ngoie, K. & Fukuyama, K. Interannual and long-term climate variability over the Zaire River Basin during the last 30 years. J. Geophys. Res. 101, 21351–21360 (1996)

    Article  Google Scholar 

  8. Camberlin, P., Janicot, S. & Poccard, I. Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int. J. Climatol. 21, 973–1005 (2001)

    Article  Google Scholar 

  9. Nicholson, S. E. & Entekhabi, D. Rainfall variability in equatorial and southern Africa: relationships with sea surface temperatures along the southwestern coast of Africa. J. Clim. Appl. Meteorol. 26, 561–578 (1987)

    Article  ADS  Google Scholar 

  10. Müller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Mele, A. Calibration of the alkenone paleotemperature index U37K based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    Article  ADS  Google Scholar 

  11. Sessions, A. L., Burgoyne, T. W., Schimmelmann, A. & Hayes, J. M. Fractionation of hydrogen isotopes in lipid biosynthesis. Org. Geochem. 30, 1193–1200 (1999)

    Article  CAS  Google Scholar 

  12. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967)

    Article  ADS  CAS  Google Scholar 

  13. Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2000)

    Article  CAS  Google Scholar 

  14. Chikaraishi, Y., Naraoka, H. & Poulson, S. R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65, 1369–1381 (2004)

    Article  CAS  Google Scholar 

  15. Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Jouzel, J., Hoffmann, G., Koster, R. D. & Masson, V. Water isotopes in precipitation: data/model comparison for present-day and past climates. Quat. Sci. Rev. 19, 363–379 (2000)

    Article  ADS  Google Scholar 

  17. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    Article  ADS  Google Scholar 

  18. Fairbanks, R. G., Charles, C. D. & Wright, J. D. in Radiocarbon After Four Decades: An Interdisciplinary Perspective (eds Taylor, R. E., Long, A. & Kra, R.) 473–500 (Springer, New York, 1992)

    Book  Google Scholar 

  19. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Glob. Biogeochem. Cycles 17, doi:10.1029/2001GB001807 (2003)

  20. Bemis, B., Spero, H., Bijma, J. & Lea, D. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998)

    Article  ADS  Google Scholar 

  21. Levitus, S. & Boyer, T. P. World Ocean Atlas 1994 Vol. 4, Temperature (NOAA Atlas NESDIS 4, US Dept of Commerce, Washington DC, 1994)

    Google Scholar 

  22. Schneider, R. R., Müller, P. J. & Ruhland, G. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10, 197–219 (1995)

    Article  ADS  Google Scholar 

  23. Rühlemann, C. et al. Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation. Paleoceanography 19, doi:10.1029/2003PA000948 (2004)

  24. Manabe, S. & Stouffer, R. J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997)

    Article  ADS  Google Scholar 

  25. Steig, E. C. No two latitudes alike. Science 293, 2015–2016 (2001)

    Article  CAS  Google Scholar 

  26. Kim, J.-H., Schneider, R. R., Mulitza, S. & Müller, P. J. Reconstruction of SE trade-wind intensity based on sea-surface temperature gradients in the Southeast Atlantic over the last 25 kyr. Geophys. Res. Lett. 30, doi:10.1029/2003GL017557 (2003)

  27. Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987)

    Article  ADS  Google Scholar 

  28. Stuiver, M., Reimer, P. J. & Braziunas, T. F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 1127–1151 (1998)

    Article  CAS  Google Scholar 

  29. Bard, E. Geochemical and geophysical implications of the radiocarbon calibration. Geochim. Cosmochim. Acta 62, 2025–2038 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Nicholson, S. E. The nature of rainfall variability over Africa on time scales of decades to millennia. Glob. Planet. Change 26, 137–158 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. M. Dupont, T. I. Eglinton, G. Lohmann and S. Mulitza for discussions. We are grateful to W. Bevern, A. Jaeschke, M. Kienhuis, M. Segl and S. P. Sylva for analytical assistance. P. M. Grootes and staff of the Leibniz-Labor for Radiometric Dating and Isotope Research, Kiel provided 14C-AMS datings. This research was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Schefuß.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schefuß, E., Schouten, S. & Schneider, R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005). https://doi.org/10.1038/nature03945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03945

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing