Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis

Subjects

Abstract

All known forms of life require phosphorus, and biological processes strongly influence the global phosphorus cycle1. Although the record of life on Earth extends back to 3.8 billion years ago2 and the advent of biological phosphate processing can be tracked to at least 3.5 billion years ago3, the earliest known P-rich deposits appeared only 2 billion years ago4,5. The onset of P deposition has been attributed to the rise of atmospheric oxygen 2.4–2.3 billion years ago and the related profound biogeochemical shifts6,7,8,9, which increased the riverine input of phosphate to the ocean and boosted biological productivity and phosphogenesis5,10. However, the P-rich deposits post-date the rise of oxygen by about 300 million years. Here we use microfabric, trace element and carbon isotope analyses to assess the environmental setting and redox conditions of the 2-billion-year-old P-rich deposits of the vent- or seep-influenced Zaonega Formation, northwest Russia. We identify phosphatized microorganism fossils that resemble modern methanotrophic archaea and sulphur-oxidizing bacteria, analogous to organisms found in modern seep settings and upwelling zones with a sharp redoxcline11,12. We therefore propose that the P-rich deposits in the Zaonega Formation were formed by phosphogenesis mediated by sulphur bacteria, similar to modern sites13, and by the precipitation of calcium phosphate minerals on microbial templates during early diagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geochemical profiles through the phosphate-rich interval of the Zaonega Formation exposed in a 10-m-thick outcrop at Shunga village.
Figure 2: SEM images and element maps of phosphate nodules, layers and lenses.
Figure 3: SEM–BSE images of phosphate nodules and layers from polished rock slabs.
Figure 4: SEM–BSE images of cracked rock surfaces illustrating apatite particles (BSE light) and the massive carbonaceous matrix (BSE dark) in phosphate nodules and layers.
Figure 5: TEM images of a 100-nm-thick foil generated by focused ion beam milling.

Similar content being viewed by others

References

  1. Follmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 40, 55–124 (1996).

    Article  Google Scholar 

  2. Rosing, M. T. C-13-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    Article  Google Scholar 

  3. Blake, R. E., Chang, S. J. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1039 (2010).

    Article  Google Scholar 

  4. Melezhik, V. A. et al. Emergence of the modern earth system during the archean-proterozoic transition. GSA Today 15, 4–11 (2005).

    Article  Google Scholar 

  5. Papineau, D. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology 10, 165–181 (2010).

    Article  Google Scholar 

  6. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).

    Article  Google Scholar 

  7. Reuschel, M. et al. Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Res. 192–195, 78–88 (2012).

    Article  Google Scholar 

  8. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).

    Article  Google Scholar 

  9. Kump, L. R. et al. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334, 1694–1696 (2011).

    Article  Google Scholar 

  10. Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317, 295–304 (2012).

    Article  Google Scholar 

  11. Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).

    Article  Google Scholar 

  12. Kalanetra, K. M., Joye, S. B., Sunseri, N. R. & Nelson, D. C. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ. Microbiol. 7, 1451–1460 (2005).

    Article  Google Scholar 

  13. Schulz, H. N. & Schulz, H. D. Large sulfur bacteria and the formation of phosphorite. Science 307, 416–418 (2005).

    Article  Google Scholar 

  14. Williams, L. A. & Reimers, C. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report. Geology 11, 267–269 (1983).

    Article  Google Scholar 

  15. Goldhammer, T., Bruchert, V., Ferdelman, T. G. & Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geosci. 3, 557–561 (2010).

    Article  Google Scholar 

  16. Benzerara, K. et al. Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet. Sci. Lett. 228, 439–449 (2004).

    Article  Google Scholar 

  17. Puchtel, I. S., Brugmann, G. E. & Hofmann, A. W. Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet. Sci. Lett. 170, 447–461 (1999).

    Article  Google Scholar 

  18. Melezhik, V. A., Huhma, H., Condon, D. J., Fallick, A. E. & Whitehouse, M. J. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35, 655–658 (2007).

    Article  Google Scholar 

  19. Qu, Y., Crne, A. E., Lepland, A. & Van Zuilen, M. A. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia. Geobiology 10, 467–478 (2012).

    Article  Google Scholar 

  20. Asael, D. et al. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol.http://dx.doi.org/10.1016/j.chemgeo.2013.08.003 (2013).

  21. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  22. Van Zuilen, M. A. et al. Mineral-templated growth of natural graphite films. Geochim. Cosmochim. Acta 83, 252–262 (2012).

    Article  Google Scholar 

  23. Rozanov, A. Y., Astafieva, M. M. & Hoover, R. B. in Proc. SPIE Instruments, Methods, and Missions for Astrobiology X Vol. 6694 (eds Hoover, R. B., Levin, G. V., Rozanov, A. Y. & Davies, P. C. W.) 669409 (SPIE, 2007).

    Book  Google Scholar 

  24. Krajewski, K. P. et al. Biological processes and apatite formation in sedimentary environments. Eclogae. Geologicae. Helvetiae. 87, 701–745 (1994).

    Google Scholar 

  25. Sanchez-Navas, A. & Martin-Algarra, A. Genesis of apatite in phosphate stromatolites. Eur. J. Mineral. 13, 361–376 (2001).

    Article  Google Scholar 

  26. Knittel, K., Losekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).

    Article  Google Scholar 

  27. Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E. & Corsetti, F. A. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445, 198–201 (2007).

    Article  Google Scholar 

  28. Xiao, S. H., Hagadorn, J. W., Zhou, C. M. & Yuan, X. L. Rare helical spheroidal fossils from the Doushantuo Lagerstatte: Ediacaran animal embryos come of age? Geology 35, 115–118 (2007).

    Article  Google Scholar 

  29. Cunningham, J. A. et al. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proc. R. Soc. B 279, 2369–2376 (2012).

    Article  Google Scholar 

  30. Fallick, A. E., Melezhik, V. A. & Simonson, B. M. in Biosphere Origin and Evolution (eds Dobretsov, N., Kolchanov, N., Rozanov, A. & Zavarzin, G.) 169–188 (Springer, 2008).

    Book  Google Scholar 

Download references

Acknowledgements

This study was undertaken in the frame of the FAR-DEEP and was supported by the International Continental Drilling Program, Geological Survey of Norway, Centre for Geobiology of Bergen University, Norwegian Research Council grant 191530/V30, Estonian Science Foundation grants ESF8774 and SF0180069S08 and Natural Environment Research Council grant NE/G00398X/1. We thank V. A. Melezhik for coordinating the FAR-DEEP, M. Mesli for managing the FAR-DEEP sample archive and L. Kump for providing unpublished carbon isotope data on FAR-DEEP core 13A.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and K.K. conceived the study; A.E.R., A.L., L.J., A.R.P., A.E.Č. and A.P.M. carried out field work and sample collection; L.J., K.K., P.S., K.Ü., K.M., N.M.W.R., A.P.M. and A.L. carried out mineralogic, petrographic geochemical analyses; A.E.F. and L.J. carried out carbon isotope analyses, R.W., M.A.v.Z., A.S., L.J., K.M. and A.L. carried out TEM analyses. All authors contributed to the interpretation of results and the writing and editing of the manuscript.

Corresponding author

Correspondence to Aivo Lepland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepland, A., Joosu, L., Kirsimäe, K. et al. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nature Geosci 7, 20–24 (2014). https://doi.org/10.1038/ngeo2005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing