Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures

Abstract

THE discussion of candidate source craters for the catastrophic impact that occurred at the boundary between the Cretaceous and Tertiary periods (K/T boundary) has recently centred on two buried craters: the Chicxulub in Mexico (>200 km diameter) and the Manson in Iowa (35 km diameter), both of which have 40Ar–39Ar ages of 65 Myr, indistinguishable from that of impact glass spherules found in K/T boundary sediments1–4. Here we report the strontium, neodymium and oxygen isotopic compositions of core samples of impact melt rock recovered from drill holes into both the Chicxulub and Manson craters, and compare these with previously published isotopic data for impact glasses from the K/T boundary of the Beloc Formation in Haiti5–7. The Chicxulub melt rocks are isotopically indistinguishable from the K/T impact glass, strongly supporting the proposition that Chicxulub is a source crater for the K/T catastrophe. The Manson melt rocks, by contrast, have a clearly different isotopic composition, strongly suggesting that they are unrelated to the K/T impact spherules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Izett, G. A., Dalrymple, G. B. & Snee, L. W. Science 252, 1539–1542 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Swisher, C. C. et al. Science 257, 954–958 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Sharpton, V. L. et al. Nature 359, 819–821 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Kunk, M. J., Izett, G. A., Haugerud, R. A. & Sutter, J. F. Science 244, 1565–1568 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Sigurdsson, H. et al. Nature 353, 839–842 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Premo, W. R. & Izett, G. A. Meteoritics 27, 413–423 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Blum, J. D. & Chamberlain, C. P. Science 257, 1104–1107 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Alvarez, L. E., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1108 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Anderson, R. R. & Hartung, J. B. Proc. lunar planet. Sci. 22, 101–110 (1992).

    ADS  Google Scholar 

  10. Hildebrand, A. R. & Boynton, W. V. Science 248, 843–847 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Hildebrand, A. R. et al Geology 19, 867–871 (1991).

    Article  ADS  Google Scholar 

  12. Koeberl, C., Anderson, R. R., Hartung, J. B. & Reimold, W. U. Lunar planet. Sci. XXIV, 811–812 (1993).

    ADS  Google Scholar 

  13. Koeberl, C. Geology 21, 211–214 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Kring, D. A. & Boynton, W. V. Nature 358, 141–144 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Sigurdsson, H. et al. Nature 349, 482–487 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Burke, W. H. et al. Geology 10, 546–549 (1982).

    Article  ADS  Google Scholar 

  17. Faure, G. Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  18. Shaw, H. F. & Wasserburg, G. J. Earth planet. Sci. Lett. 60, 155–177 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Blum, J. D., Papanastassiou, D. A., Koeberl, C. & Wasserburg, G. J. Geochim. cosmochim. Acta 56, 483–492 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Krogh, T. E., Kamo, S. L. & Bohor, B. F. Abstr 1992 Sudbury Conf. LPI Contr. 790, 44–45 (LPI, Sudbury, Canada, 1992).

  21. Premo, W. R. & Izett, G. A. Lunar planet. Sci. XXIV, 1171–1172 (1993).

    ADS  Google Scholar 

  22. López Ramos, E. Geologia de México, Univ. Nac. Autón. de México 269 (1983).

  23. Melosh, H. J. Impact Cratering: A Geologic Process Oxford Univ Press, New York (1989).

    Google Scholar 

  24. Claypool, G. E. et al. Chem. Geol. 28, 199–260 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, J., Chamberlain, C., Hingston, M. et al. Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364, 325–327 (1993). https://doi.org/10.1038/364325a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364325a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing