Skip to main content

Advertisement

Log in

Variations in the physical and mechanical properties of rocks from different depths in the Songliao Basin under uniaxial compression conditions

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

With the development of deep energy resources, understanding variations in the physical and mechanical properties of rocks at different depths is significant. In this paper, core samples from ten different burial depths (1000 m, 1300 m, 1600 m, 1850 m, 2600 m, 3500 m, 4800 m, 5100 m, 5600 m, and 6400 m) were collected from the Songke No. 2 (SK-2) well and the Daqing Oilfield. To the best of our knowledge, this is the first study involving the physical property and uniaxial compression testing of rock cores from such a large range of burial depths. The experimental results show that the content of weak phase minerals decreases with increasing depth. The change in the hard phase minerals varies nonlinearly with depth. From 3500 to 5600 m, the content of hard phase minerals decreases, while the content of the middle phase minerals increases. The elastic modulus exponentially increases with increasing depth, while Poisson’s ratio decreases with increasing depth. Additionally, the uniaxial compressive strength displays a nonlinear logarithmic increase with increasing depth. Finally, the effects of petrophysical properties on the mechanical behavior of rock at different depths are discussed. The elastic modulus, Poisson’s ratio, and compressive strength all have a negative correlation with the content of weak phase minerals. These results have important value for studying the mechanics of rocks at different depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alkhasova D (2020) Technological design and efficiency assessment of heat production from dry rock with different energy potential. Geomech Geophys Geo-Energy Geo-Resour 6(1):5

    Article  Google Scholar 

  • Berckhemer H, Rauen A, Winter H et al (1997) Petrophysical properties of the 9-km-deep crustal section at KTB. J Geophys Res Solid Earth 102(B8):18337–18361

    Article  Google Scholar 

  • Bourlange S, Pierre Henry J, Moore C et al (2003) Fracture porosity in the décollement zone of nankai accretionary wedge using logging while drilling resistivity data. Earth Planet Sci Lett 209(1–2):103–112

    Article  Google Scholar 

  • Chun ZC, Huan ZX, Huan ZJ, et al (2018) Scientific results of geophysical logging in the upper Cretaceous Strata, CCSD SK-2 East Borehole in the Songliao Basin of Northeast China. Acta Geosci Sin

  • Fangming L, Zhongyuan T, Aming J et al (2009) Prediction of reservoir depletion degree and production GOR using logging-while-drilling data. Petrol Explor Dev 36(5):617–622

    Article  Google Scholar 

  • Gao R, Cai X (1997) Hydrocarbon formation conditions and distirbution rules in the Songliao Basin. Petroleum Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Gao Y, Wang C, Wang P, Gao Y, Huang Y, Zou C (2019) Progress on continental scientific drilling project of cretaceous songliao basin (sk-1 and sk-2). Sci Bull 2:73–75

    Article  Google Scholar 

  • Geraud Y, Rosener M, Surma F et al (2010) Physical properties of fault zones within a granite body: example of the Soultz-sous-Forêts geothermal sit. CR Geosci 342(7–8):566–574

    Article  Google Scholar 

  • Group E (1997) KTB and the electrical conductivity of the crust. J Geophys Res 102:18289–18305

    Article  Google Scholar 

  • Herrmann J, Rybacki E, Sone H et al (2018) Deformation experiments on Bowland and Posidonia Shale—part I: strength and Young’s modulus at ambient and in situ pc–T conditions. Rock Mech Rock Eng 51:3645–3666

    Article  Google Scholar 

  • Jia Z, Li C, Zhang R, Wang M, Gao M, Zhang Z et al (2019) Energy evolution of coal at different depths under unloading conditions. Rock Mech Rock Eng 52:4637–4649

    Article  Google Scholar 

  • Jiang G, Zuo J, Li Y et al (2019) Experimental investigation on mechanical and acoustic parameters of different depth shale under the effect of confining pressure. Rock Mech Rock Eng 52:4273–4286

    Article  Google Scholar 

  • Konaté Ahmed Amara, Pan H, Ma H et al (2017) Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4). Acta Geophys 65(4):683–700

    Article  Google Scholar 

  • Kwon S, Xie L, Park S et al (2019) Characterization of 4.2-km-deep fractured granodiorite cores from Pohang Geothermal Reservoir, Korea. Rock Mech Rock Eng 52(3):771–782

    Article  Google Scholar 

  • Liu Q, Zhang R, Wang M, Wei S, Zhang Z, Gao M et al (2017) Physical properties of coal from different depths. J China Coal Soc 42:2101–2109

    Google Scholar 

  • Lund S, Stoner JS, Channell JE et al (2006) A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Phys Earth Planet Inter 156(3–4):194–204

    Article  Google Scholar 

  • Man K, Zhou H (2010) Research on dynamic fracture toughness and tensile strength of rock at different depths. Chin J Rock Mech Eng 29:1657–1663

    Google Scholar 

  • Marzano F, Pregliasco M, Rocca V (2020) Experimental characterization of the deformation behavior of a gas-bearing clastic formation: soft or hard rocks? A case study. Geomech Geophys Geo-Energy Geo-Resour 6(1):10

    Article  Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP et al (1999) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306(3–4):345–366

    Article  Google Scholar 

  • Rybacki E, Reinicke A, Meier T et al (2015) What controls the mechanical properties of shale rocks? Part I: strength and Young’s modulus. J Petrol Sci Eng 135:702–722

    Article  Google Scholar 

  • Tian ZY, Han P (1993) Structure analysis and formation mechanism of Meso-Cenozoic Basin in East China. Petrol Explor Dev 20:1–8

    Google Scholar 

  • Trčková J, Živor R, Přikryl R (2002) Physical and mechanical properties of selected amphibolite core samples from the Kola Superdeep Borehole KSDB-3. Terra Nova 14(5):379–387

    Article  Google Scholar 

  • Valley B, Evans KF (2015) Estimation of the stress magnitudes in Basel enhanced geothermal system. In: Proceedings world geothermal congress, Melbourne, Australia, pp 19–25

  • Xiao HB, Yang JZ, Ju XD et al (2009) Application of v-system in acoustic logging while drilling data denoising. J China Univ Petrol 33(2):58–62

    Google Scholar 

  • Xie XN, Jiao JJ, Tang ZH, Zheng CM (2003) Evolution of abnormally low pressure and its implication for the hydrocarbon system in the Southeast Uplift zone of Songliao Basin, China. AAPG Bull 87:99–119

    Google Scholar 

  • Xie HP, Gao F, Ju Y (2015) Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng 34:2161–2178

    Google Scholar 

  • Xie H, Li C, Zhou T, Chen J, Liao J, Ma J, Li B (2020) Conceptualization and evaluation of the exploration and utilization of low/medium-temperature geothermal energy: a case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Geomech Geophys Geo-Energy Geo-Resour 6:18

    Article  Google Scholar 

  • Zhang Y, Zhao G (2020) A global review of deep geothermal energy exploration: from a view of rock mechanics and engineering. Geomech Geophys Geo-Energy Geo-Resour 6(1):1–26

    Article  Google Scholar 

  • Zhang Z, Xie H, Ru Z, Zhang Z, Gao M, Jia Z et al (2018) Deformation damage and energy evolution characteristics of coal at different depths. Rock Mech Rock Eng 52:1491–1503

    Article  Google Scholar 

  • Zhou H, Xie H, Zuo J (2005) Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv Mech 5:91–99

    Google Scholar 

  • Zhou HW, Xie HP, Zuo JP, Du SH (2010) Experimental study of the effect of depth on mechanical parameters of rock. Chin Sci Bull 55:3276–3284

    Article  Google Scholar 

  • Zuo J, Chai N, Zhou H (2011) Study on the effect of buried depth on failure and energy characteristics of the Basalt. Chin J Undergr Space Eng 7:1174–1180

    Google Scholar 

  • Zuo J, Chai N, Zhou H (2013) Investigation on failure behavior of basalt from different depths based on three-point bending meso-experiments. Chin J Rock Mech Eng 32:689–695

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants No. 51822403, No. 51827901 and No. 51804203), Department of Science and Technology of Guangdong Province (No. 2019ZT08G315) and Shenzhen Clean Energy Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunbao Li or Heping Xie.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, C., He, Z. et al. Variations in the physical and mechanical properties of rocks from different depths in the Songliao Basin under uniaxial compression conditions. Geomech. Geophys. Geo-energ. Geo-resour. 6, 43 (2020). https://doi.org/10.1007/s40948-020-00163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-020-00163-z

Keywords

Navigation