Skip to main content

Advertisement

Log in

Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

One possible way of mitigating carbon dioxide (CO2) emissions from fossil fuel combustion is using carbon dioxide capture and storage (CCS) technology. However, public perception concerning CO2 storage in the geosphere is generally negative, being particularly motivated by perceived leakage risks. Therefore, a main issue when attempting to gain public acceptance is ensuring provision of appropriate monitoring practices, aimed at providing health, safety and environmental risk assessment, so that potential risks from CO2 storage are minimized. Naturally occurring CO2 deposits provide unique natural analogues for evaluating and validating methods used for the detection and monitoring of CO2 spreading and degassing into the atmosphere. Geological and hydrological structures of the Cheb Basin (NW Bohemia, Czech Republic) represent such a natural analogue for investigating CO2 leakage and offer a perfect location at which to verify monitoring tools used for direct investigation of processes along preferential migration paths. This shallow basin dating from the Tertiary age is characterized by up to 300 m thick Neogene sediment deposits and several tectonically active faults. The objectives of this paper are to introduce the CO2 analogues concept to present the Eger Rift as a suitable location for a natural CO2 analogue site and to demonstrate to what extent such an analogue site should be used (with a case study). The case study presents the results obtained from a joint application of geoelectrical measurements in combination with soil CO2 concentration and flux determination methods, for the detection and characterization of natural CO2 releases at gas seeps (as part of a hierarchic monitoring concept). To highlight discharge-controlling structural near surface features was the initial motivation for the application of geoelectrical measurements. Soil-gas concentration and flux measurement techniques are relatively simple to employ and are valuable methods that can be used to monitor seeping CO2 along preferential pathways. Joint interpretation of both approaches yields a first insight into fluid paths and reveals that the thickness and permeability of site-specific near surface sedimentary deposits have a great influence upon the spatial distribution of the CO2 degassing pattern at surface level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizebeokhai AP, Olayinka AI, Singh VS (2010) Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. Environ Earth Sci 61:1481–1492

    Article  Google Scholar 

  • Annunziatellis A, Beaubien SE, Bigi, S, Ciotoli, G, Coltella M, Lombardi S (2008) Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage. Int J Greenhouse Gas Control 2:353–372

    Article  Google Scholar 

  • Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM, Oldenburg C, Hoversten M, Imbus S (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture project geologic storage of carbon dioxide with monitoring and verification, vol 2, Chap. 19. Elsevier, Amsterdam, pp 1001–1013

  • Ball L, Ge S, Caine J, Revil A, Jardani A (2010) Constraining fault-zone hydrogeology through integrated hydrological and geoelectrical analysis. Hydrogeol J 18:1057–1067

    Article  Google Scholar 

  • Ballentine CJ, Schoell M, Coleman D, Cain BA (2001) 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin. Nature 409:327–331

    Article  Google Scholar 

  • Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32

    Article  Google Scholar 

  • Barberi F, Carapezza ML, Ranaldi M, Tarchini L (2007) Gas blowout from shallow boreholes at Fiumicino (Rome): induced hazard and evidence of deep CO2 degassing on the Tyrrhenian margin of Central Italy. J Volcanol Geotherm Res 165:17–31

    Article  Google Scholar 

  • Battani A, Deville E, Faure JL, Jeandel E, Noirez S, Tocqué E, Benoît Y, Schmitz J, Parlouar D, Sarda P, Gal F, Le Pierres K, Brach M, Braibant G, Beny C, Pokryszka Z, Charmoille A, Bentivegna G, Pironon J, de Donato P, Garnier C, Cailteau C, Barrès O, Radilla G, Bauer A (2010) Geochemical study of natural CO2 emissions in the French Massif Central: how to predict origin, processes and evolution of CO2 leakage. Oil Gas Sci Technol Rev IFP 65:615–633

    Article  Google Scholar 

  • Baubron JC, Rigo A, Toutain JP (2002) Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet Sci Lett 196:69–81

    Article  Google Scholar 

  • Beaubien SE, Ciotoli G, Coombs P, Dictor MC, Kruger M, Lombardi S, Pearce JM, West JM (2008) The impact of a naturally occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy). Int J Greenhouse Gas Control 2:373–387

    Article  Google Scholar 

  • Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys J Int 173:718–732

    Article  Google Scholar 

  • Benson S (2005) Lessons learned from industrial and natural analogs for health, safety and environmental risk assessment for geological storage. In: Benson SM, Oldenburg C, Hoversten M, Imbus S (eds) Carbon dioxide capture for storage in deep geologic formations–results from the CO2 capture project geologic storage of carbon dioxide with monitoring and verification, vol 2, Chap. 25. Elsevier, Amsterdam, pp 1133–1141

  • Bräuer K, Kämpf H, Faber E, Koch U, Nitzsche H-M, Strauch G (2005) Seismically triggered microbial methane production relating to the Vogtland—NW Bohemia earthquake swarm period 2000, Central Europe. Geochem J 39:441–450

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G, Tesar J (2008) Natural laboratory NW Bohemia: comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochem Geophys Geosyst 9:Q04018. doi:10.1029/2007GC001921

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift¸ Czech Republic. Chem Geol 290:163–176

    Article  Google Scholar 

  • Byrdina S, Revil A, Pant SR, Koirala BP, Shrestha PL, Tiwari DR, Gautam UP, Shrestha K, Sapkota SN, Contraires S, Perrier F (2009) Dipolar self-potential anomaly associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal. J Geophys Res Solid Earth 114:B10101

    Article  Google Scholar 

  • Carapezza ML, Ricci T, Ranaldi M, Tarchini L (2009) Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. J Volcanol Geoth Res 182:231–245

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Marini L, Raco B (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal area. Earth Planet Sci Lett 274:372–379

    Article  Google Scholar 

  • Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 301:321–332

    Article  Google Scholar 

  • Dietrich P, Lamert H, Schütze C, Schneidewind U, Werban U (2009) Combination of different methods for the detection and monitoring of CO2 degassing at the near surface. Eos Trans AGU 90(52), Fall Meet Suppl, Abstract H21E−0897

  • Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem Articles 193:291–300

    Article  Google Scholar 

  • Etiope G, Guerra M, Raschi A (2005) Carbon dioxide and radon geohazards over a gas-bearing fault in the Siena Graben (Central Italy). Terr Atmos Ocean Sci 16:885–896

    Google Scholar 

  • Finizola A, Revil A, Rizzo E, Piscitelli S, Ricci T, Morin J, Angeletti B, Mocochain L, Sortino F (2006) Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO2 soil degassing investigations. Geophys Res Lett 33:L17304. doi:10.1029/2006GL026842

  • Finizola A, Aubert M, Revil A, Schütze C, Sortino F (2009) Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. J Volcanol Geotherm Res 183:213–227

    Article  Google Scholar 

  • Fischedik M, Esken A, Luhman H, Schüwer D and Supersberger N (2007) CO2-capture and geological storage as a climate policy option. Technologies, concepts, perspectives. Wuppertal Spezial 35 e. Wuppertal Institute for Climate, Environment and Energy

  • Fischer T, Michálek J (2008) Post 2000-swarm microearthquake activity in the principal focal zone of west Bohemia/Vogtland: space–time distribution and waveform similarity analysis. Stud Geophys Geod 52:493–511

    Article  Google Scholar 

  • Flechsig Ch, Bussert R, Rechner J, Schütze C, Kämpf H (2008) The Hartoušov mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): a comparative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2-degassing structure. Z Geol Wiss 36:177–193

    Google Scholar 

  • Flechsig Ch, Fabig T, Rücker C, Schütze C (2010) Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure. Stud Geophys Geod 54:443–463

    Article  Google Scholar 

  • Geissler WH, Kämpf H, Kind R, Bräuer K, Klinge K, Plenefisch T, Horálek J, Zedník J, Nehybka V (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics 24: TC5001. doi:10.1029/2004TC001672

  • Günther Th, Rücker C, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography—II. Inversion. Geophys. J. Int. 166:506–517

    Article  Google Scholar 

  • Haszeldine RS, Quinn O, England G, Wilkinson M, Shipton ZK, Evans JP, Heath J, Crossey L, Ballentine CJ, Graham CM (2005) Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil Gas Sci Technol Rev IFP 60:33–49

    Article  Google Scholar 

  • Heinicke J, Koch U, Martinelli G (1995) CO2 and radon measurements in the Vogtland area (Germany)—a contribution to earthquake prediction research. Geoph. Res. Lett. 22:771–774

    Article  Google Scholar 

  • Heuer B, Geissler WH, Kind R, Working Group BOHEMA (2011) Receiver function search for a baby plume in the mantle transition zone beneath the Bohemian Massif. Geophys J Int 187:577–594

    Article  Google Scholar 

  • Holloway S, Pearce JM, Hards VL, Ohsumi T, Gale J (2007) Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 32:1194–1201

    Article  Google Scholar 

  • Italiano F, Bonfanti P, Ditta M, Petrini R, Slejko F (2009) Helium and carbon isotopes in the dissolved gases of Friuli Region (NE Italy): geochemical evidence of CO2 production and degassing over a seismically active area. Chem Geol 266:76–85

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe, Version 4. Available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org

  • Johansson S, Rosqvist H, Svensson M, Dahlin T, Leroux V (2011) An alternative methodology for the analysis of electrical resistivity data from a soil gas study. Geophys J Int 186:632–640

    Article  Google Scholar 

  • Keating EH, Fessenden J, Kanjorski N, Koning D, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60:521–536

    Article  Google Scholar 

  • Kemski J, Klingel R, Siehl A (1996) Classification and mapping of radon-affected areas in Germany. Environ Int 22:789–798

    Article  Google Scholar 

  • Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT Field Site, Bozeman, Montana. Environ Earth Sci 60:273–284. doi:10.1007/s12665-009-0401-1

    Article  Google Scholar 

  • Kießling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenhouse Gas Control 4(5):816–826. doi:10.1016/j.ijggc.2010.05.001

    Article  Google Scholar 

  • Kirchsteiger C (2008) Carbon capture and storage-desirability from a risk management point of view. Saf Sci 46:7

    Article  Google Scholar 

  • Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke U-J, Kalbacher T, Park C-H, Sauer U, Schütze C, Shao HB, Singh AK, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking approach for geologic CO2 injection and storage. Environ. Earth Sci. doi:10.1007/s12665-012-1656-5

  • Krevor S, Perrin JC, Esposito A, Rella C, Benson S (2010) Rapid detection and characterization of surface CO2 leakage through the real-time measurement of delta(13) C signatures in CO2 flux from the ground. Int J Greenhouse Gas Control 4:811–815

    Article  Google Scholar 

  • Krüger M, Jones D, Frerichs J, Oppermann BI, West J, Coombs P, Green K, Barlow T, Lister R, Shaw R, Strutt M, Möller I (2011) Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany. Int J Greenhouse Gas Control 5:1093–1098

    Article  Google Scholar 

  • Lamert H, Geistlinger H, Werban U, Schütze C, Peter A, Hornbruch G, Pohlert M, Kalia S, Beyer M, Schulz A, Dahmke A, Dietrich P (2012) Feasibility of geoelectric monitoring and multi-phase modelling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci. doi:10.1007/s12665-012-1669-0

  • Lewicki JL, Oldenburg CM, Dobeck L, Spangler L (2007) Surface CO2 leakage during two shallow subsurface CO2 releases. Geophys Res Lett 34:L24402. doi:101029/2007GL032047

  • Lewicki JL, Hilley GE, Dobeck L, Spangler L (2010) Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release. Environ Earth Sci 60:285–297

    Article  Google Scholar 

  • Lombardi S, Annunziatellis A, Ciotoli G, Beaubien SE (2006) Near surface gas geochemistry techniques to assess and monitor CO2 geological sequestration sites. In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO Science Series, vol IV. Earth and Environmental Sciences, vol 65. Springer, Berlin, pp 141–156

    Google Scholar 

  • McClymont AF, Green AG, Streich R, Horstmeyer H, Tronicke J, Nobes DC, Pettinga J, Campbell J, Langridge R (2008) Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics 73:B11–B23

    Article  Google Scholar 

  • Moore J, Adams M, Allis R, Lutz S, Rauzi S (2005) Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: an example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chem Geol 217:365–385

    Article  Google Scholar 

  • Nakatsuka Y, Xue ZQ, Garcia H, Matsuoka T (2010) Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. Int J Greenhouse Gas Control 4:209–216

    Article  Google Scholar 

  • Nguyen F, Garambois S, Chardon D, Hermitte D, Bellier O, Jongmans O (2007) Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. J. Appl. Geophys. 62:338–355

    Article  Google Scholar 

  • Oltra C, Sala R, Sola R, Di Masso M, Rowe G (2010) Lay perceptions of carbon capture and storage technology. Int J Greenhouse Gas Control 4:698–706

    Article  Google Scholar 

  • Papp B, Deák F, Horváth Á, Kiss Á, Rajnai G, Szabó Cs (2008) A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole. J Environ Radioact 99:1731–1735

    Article  Google Scholar 

  • Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Dietrich P, Werban U, Vogt C, Richnow H, Großmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci. doi:10.1007/s12665-012-1700-5

  • Pettinelli E, Beaubien SE, Zaja A, Menghini A, Praticelli N, Mattei E, Di Matteo A, Annunziatellis A, Ciotoli G, Lombardi S (2010) Characterization of a CO2 gas vent using various geophysical and geochemical methods. Geophysics 75:B137–B146

    Article  Google Scholar 

  • Pfanz H, Vodnik D, Wittmann C, Aschan G, Batic F, Turk B, Macek I (2007) Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. J. Environ. Exp. Bot. 61:41–48

    Article  Google Scholar 

  • Pironon J, de Donato P, Barres O, Garnier C, Cailteau C, Vinsot A, Radilla G (2010) On-line greenhouse gas detection from soils and rock formations. Int J Greenhouse Gas Control 4:217–224

    Article  Google Scholar 

  • Rennert T, Eusterhues K, Pfanz H, Totsche KU (2011) Influence of geogenic CO2 on mineral and organic soil constituents on a mofette site in the NW Czech Republic. Eur J Soil Sci 62:572–580

    Article  Google Scholar 

  • Revil A, Finizola A, Sortino F, Ripepe M (2004) Geophysical investigations at Stromboli volcano, Italy. Implications for ground water flow. Geophys J Int 157:426–440

    Article  Google Scholar 

  • Rücker C, Günther Th, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography–I. Modelling. Geophys. J. Int. 166:495–505

    Article  Google Scholar 

  • Schütze C, Rücker C, Flechsig Ch (2010) Large-scale geoelectrical measurements at the Central Bohemian shear zone nearby the research well Rittsteig (Bavaria, Germany). Z Geol Wiss 38:69–77

    Google Scholar 

  • Schütze C, Vienken Th, Werban U, Dietrich P, Finizola A, Leven C (2012) Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones. J Appl Geophys. doi:10.1016/j.jappgeo.2012.03.002

  • Sharp JD, Jaccard MK, Keith DW (2009) Anticipating public attitudes toward underground CO2 storage. Int J Greenhouse Gas Control 3:641–651

    Article  Google Scholar 

  • Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2010) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60:227–239

    Article  Google Scholar 

  • Stevens SH (2005) Natural CO2 fields as analogs for geologic CO2 storage. In: Benson SM, Oldenburg C, Hoversten M, Imbus S (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture project geologic storage of carbon dioxide with monitoring and verification, vol 2, Chap. 3, pp 1015–1030

  • Tank V, Pfanz H, Gemperlein H, Strobl P (2005) Infrared remote sensing of Earth degassing—ground study. Ann Geophys 48:181–194

    Google Scholar 

  • Tronicke J, Villamor P, Green AG (2006) Detailed shallow geometry and displacement estimates of the Maleme Fault Zone, New Zealand, using 2-D and 3-D georadar. Near Surf Geophys 4:155–162

    Google Scholar 

  • Viveiros F, Ferreira T, Silva C, Gaspar JL (2009) Meteorological factors controlling soil gases and indoor CO2 concentration: a permanent risk in degassing areas. Sci Total Environ 407:1362–1372

    Article  Google Scholar 

  • Vodnik D, Videmsek U, Pintar M, Macek I, Pfanz H (2009) The characteristics of soil CO2 fluxes at a site with natural CO2 enrichment. Geoderma 150:32–37

    Article  Google Scholar 

  • Voltattorni N, Sciarra A, Caramanna G, Cinti D, Pizzino L, Quattrocchi F (2009) Gas geochemistry of natural analogues for the studies of geological CO2 sequestration. Appl Geochem 24:1339–1346

    Article  Google Scholar 

  • Walia V, Lin SJ, Fu CC, Yang TF, Hong WL, Wen KL, Chen CH (2010) Soil-gas monitoring: a tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Appl Geochem 25:602–607

    Article  Google Scholar 

  • Wannamaker PE, Caldwell TG, Doerner WM, Jiracek GR (2004) Fault zone fluids and seismicity in compressional and extensional environments inferred from electrical conductivity: the New Zealand Southern Alps. Earth Planets Space 56:1171–1176

    Google Scholar 

  • Weinlich FH, Bräuer K, Kämpf H, Strauch G, Tesar J, Weise SM (1999) An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C and N) and compositional fingerprints. Geochim Cosmochim Acta 63:3653–3671

    Article  Google Scholar 

  • Yang TF, Chou CY, Chen CH, Chyi LL, Jiang JH (2003) Exhalation of radon and its carrier gases in SW Taiwan. Radiat Meas. 36:425–429

    Article  Google Scholar 

  • Yang TF, Walia V, Chyi LL, Fu CC, Chen CH, Liu TK, Song SR, Lee CY, Lee M (2005) Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat Meas. 40:496–502

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out within the Priority Program Geotechnologies in the framework of two joint research projects “CO2 leakage test within a near surface aquifer”—support code 03G0670A-C and “MONACO—Monitoring approach for geological CO2 storage sites using a hierarchic observation concept”—support code 03G0785A. Financial support given by the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged. We thank the anonymous reviewers for the invaluable comments and our native speaker Christopher Higgins for proof reading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schütze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütze, C., Sauer, U., Beyer, K. et al. Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci 67, 411–423 (2012). https://doi.org/10.1007/s12665-012-1701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1701-4

Keywords

Navigation