Skip to main content
Log in

Effects of shock pressure and temperature on titanomagnetite from ICDP cores and target rocks of the El’gygytgyn impact structure, Russia

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of meteorite impacts on magnetic properties including magnetic susceptibility and the Verwey transition of Ti-poor titanomagnetite of volcanic rocks from the 3.6 Ma old El’gygytgyn impact structure located in the Okhotsk-Chukotka volcanic belt in north-eastern Russia. The target rocks consist mainly of rhyolite with some andesites, and is a rare example of impact structures within volcanic target rocks on Earth. 27 samples from outside the crater, the crater rim and from the depth interval 316 to 517 m below lake bottom (mblb) of the El’gygytgyn ICDP drilling were studied. A significant decrease of the average specific magnetic susceptibility by around 90% was observed between felsic volcanic rocks from the surface (18.1 × 10-6 m3/kg) and the drill cores from near the crater central uplift (1.9 × 10-6 m3/kg). Ferrimagnetic Fe-Ti oxide assemblages (Verwey transition temperature, TV: -161 to -150°C, Curie temperature, TC: 451 to 581°C), occurring in all studied samples, differ significantly. At the surface titanomaghemite is ubiquitously associated with titanomagnetite. The drill cores lack titanomaghemite, but either show a transformation into titanomagnetite and ilmenite or a strong fragmentation associated with a second TV between -172 and -188°C. Reversible curves of temperature dependence of magnetic susceptibility in the suevite indicate high depositional temperatures of at least 500°C. In the polymict and monomict impact breccia mechanical deformation of titanomagnetite and temperatures of at least 200-350°C related to the shock are suggested from temperature dependent magnetic susceptibility cycling. Lowtemperature oxidation along strongly brecciated grain surfaces in titanomagnetite is suggested to cause the lower TV and we suggest that this phenomenon is related to postimpact hydrothermal activity. The strong magnetic susceptibility decrease at El’gygytgyn is mainly influenced by shock, and post-impact hydrothermalism causes a significant additional depletion. These observations explain why magnetic lows are a ubiquitous phenomenon over impact structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón R., Buttrey D.J., Shepherd J.P. and Honig J.M., 1985. Influence of nonstoichiometry on the Verwey transition. Phys. Rev. B, 31, 430–436.

    Article  Google Scholar 

  • Carporzen L., Gilder S.A. and Hart R.J., 2006. Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett., 251, 305–317.

    Article  Google Scholar 

  • Carporzen L. and Gilder S.A., 2010. Strain memory of the Verwey transition. Geophys. Res. Lett., 115, B05103, DOI: 10.1029/2009JB006813.

    Article  Google Scholar 

  • Cornell R.M. and Schwertmann U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Second Edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Book  Google Scholar 

  • Deutsch E.R., Pätzold R.R. and Radhakrishnamurty C., 1981. Apparent superparamagnetic behaviour of some coarse-grained synthetic titanomagnetite. Phys. Earth Planet. Inter., 26, 27–36.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 2007. Magnetizations in rocks and minerals. In: Kono M. (Ed.), Geomagnetism. Treatise on Geophysics, 5. Elsevier, Amsterdam, The Netherlands, 277–336.

    Chapter  Google Scholar 

  • Elbra T., Kontny A., Pesonen L.J., Schleifer N. and Schell C., 2007. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana. Meteorit. Planet. Sci., 42, 829–838.

    Article  Google Scholar 

  • Elbra T., Kontny A. and Pesonen L.J., 2009. Rock-magnetic properties of the ICDP-USGS Eyreville core, Chesapeake Bay impact structure, Virginia, USA. Geol. Soc. Am. Spec. Pap., 458, 119–135.

    Google Scholar 

  • Gattacceca J., Lamali A., Rochette P., Boustie M. and Berthe L., 2007. The effects of explosivedriven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter., 162, 85–98.

    Article  Google Scholar 

  • Gurov E.P. and Gurova E.P., 1991. Geological Structure and Rock Composition of Impact Structures. Naukovka Dumka, Kiev, Ukraine (in Russian).

    Google Scholar 

  • Gurov E.P. and Koeberl C., 2004. Shocked rocks and impact glasses from the El’gygytgyn impact structure, Russia. Meteorit. Planet. Sci., 39, 1495–1508.

    Article  Google Scholar 

  • Gurov E.P., Koeberl C. and Yamnichenko A., 2007. El’gygytgyn impact crater, Russia: structure, tectonics, and morphology. Meteorit. Planet. Sci., 42, 307–319.

    Article  Google Scholar 

  • Hrouda F., Müller P. and Hanák J., 2003. Repeated progressive heating in susceptibility vs. temperature investigation: a new palaeotemperature indicator–Phys. Chem. Earth, 28, 653–657.

    Google Scholar 

  • Koeberl C., Pittarello L., Reimold W.U., Raschke U., Brigham-Grette J., Melles M. and Minyuk P., 2013. El’gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project. Meteorit. Planet. Sci., 48, 1108–1129.

    Article  Google Scholar 

  • Kontny A., Elbra T., Just J., Pesonen L.J., Schleicher A. and Zolk J., 2007. Petrography and shockrelated thermal remagnetization of pyrrhotite in drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana. Meteorit. Planet. Sci., 42, 811–827.

    Article  Google Scholar 

  • Lattard D., Engelmann R., Kontny A. and Sauerzapf U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res., 111, B12S28.

    Article  Google Scholar 

  • Layer P.W., 2000. Argon-40/Argon-39 age of the El’gygytgyn impact event, Chukotka, Russia. Meteorit. Planet. Sci., 35, 591–599.

    Article  Google Scholar 

  • Louzada K.L., Stewart S.T., Weiss B.P., Gattacceca J. and Bezaeva N.S., 2010. Shock and static pressure demagnetization of pyrrhotite and implications for the martian crust. Earth Planet. Sci. Lett., 290, 90–101.

    Article  Google Scholar 

  • Louzada K.L., Stewart S.T., Weiss B.P., Gattacceca J., Lillis R.J. and Halekas J.S., 2011. Impact demagnetization of the Martian crust: Current knowledge and future directions. Earth Planet. Sci. Lett., 305, 257–269.

    Article  Google Scholar 

  • Mang C., 2012. Impact-Related Modifications of Magnetite and Pyrrhotite and Their Consequences for the Magnetic Properties of Rocks from the Chesapeake Bay Impact Structure, Virginia, USA. PhD Thesis. Karlsruher Institut für Technologie, Karlsruhe, Germany.

    Google Scholar 

  • Mang C., Kontny A., Harries D., Langenhorst F. and Hecht L., 2012. Iron deficiency in pyrrhotite of suevites from the Chesapeake Bay impact crater, USA - A consequence of shock metamorphism–Meteorit. Planet. Sci., 47, 277–295.

    Article  Google Scholar 

  • Mang C. and Kontny A., 2013. Origin of two Verwey transitions in different generations of magnetite from the Chesapeake Bay impact structure, USA. J. Geophys. Res., 118, 5195–5207.

    Article  Google Scholar 

  • Mang C., Kontny A., Fritz J. and Schneider R., 2013. Shock experiments up to 30 GPa and their consequences on microstructures and magnetic properties in pyrrhotite. Geochem. Geophys. Geosyst., 14, 64–85.

    Article  Google Scholar 

  • Melles M., Brigham-Grette J., Minyuk P., Koeberl C., Andreev A., Cook T., Fedorov G., Gebhardt C., Haltia-Hovi E., Kukkonen M., Nowaczyk N., Schwamborn G., Wennrich V. and the El’gygytgyn Scientific Party, 2011. The Lake El’gygytgyn Scientific Drilling Project–conquering arctic challenges through continental drilling. Sci. Drill., 11, 29–40.

    Article  Google Scholar 

  • Minyuk P.S., Subbotnikova T.V., Brown L.L. and Murdock K.J., 2013. High-temperature thermomagnetic properties of vivianite nodules, Lake El’gygytgyn, Northeast Russia. Clim. Past, 9, 433–446.

    Article  Google Scholar 

  • Oliva-Urcia B., Kontny A., Vahle C. and Schleicher A.M., 2011. Modification of the magnetic mineralogy in basalts due to fluid-rock interactions in a high-temperature geothermal system (Krafla, Iceland). Geophys. J. Int., 186, 155–174, DOI: 10.1111/j.1365-246X.2011.05029.x.

    Article  Google Scholar 

  • Osinski G.R., Grieve R.A.F. and Spray J.G., 2004. The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteorit. Planet. Sci., 39, 1655–1683.

    Article  Google Scholar 

  • Osinski G.R., Tornabene L.L, Banerjee N.R, Cockell C.S., Flemming R., Izawa M.R.M., McCutcheon J., Parnell J., Preston L.J., Pickersgill A.E., Pontefract A., Sapers H.M. and Southam G., 2013. Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224, 347–363.

    Article  Google Scholar 

  • Pittarello L., and Koeberl C., 2013. Petrography of impact glasses and melt breccias from the El’gygytgyn impact structure, Russia. Meteorit. Planet. Sci., 48, 1236–1250.

    Article  Google Scholar 

  • Poelchau M.H. and Kenkmann T., 2011. Feather features: A low-shock-pressure indicator in quartz. J. Geophys. Res., 116, B02201.

    Article  Google Scholar 

  • Pohl J., Poschlod K., Reimold W.U., Meyer C. and Jacob J., 2010. Ries crater, Germany: The Enkingen magnetic anomaly and associated drill core SUBO 18. Geol. Soc. Am. Spec. Pap., 465, 141–163.

    Google Scholar 

  • Raschke U., Reimold W.U., Zaag P.T., Pittarello L. and Koeberl C., 2013. Lithostratigraphy of the impactite and bedrock section of ICDP drill core D1c from the El’gygytgyn impact crater, Russia. Meteorit. Planet. Sci., 48, 1143–1159.

    Article  Google Scholar 

  • Reznik B., Kontny A., Fritz J. and Gerhards U., 2016. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst., 17, DOI: 10.1002/2016GC006338.

  • Stacey F.D. and Banerjee S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Stöffler D. and Langenhorst F., 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29, 155–181.

    Google Scholar 

  • Stone D.B., Layer P.W. and Raikevich M.I., 2009. Age and paleomagnetism of the Okhotsk-Chukotka Volcanic Belt (OCVB) near Lake El’gygytgyn, Chukotka, Russia. Stephan Mueller Spec. Publ. Ser., 4, 243–260.

    Article  Google Scholar 

  • Tikoo S.M., Gattacceca J., Swanson-Hysell N.L., Weiss B.P., Suavet C. and Cournède C., 2015. Preservation and detectability of shock-induced magnetization. J. Geophys. Res.-Planets, 120, 1461–1475, DOI: 10.1002/2015JE004840.

    Article  Google Scholar 

  • Todo S., Takeshita N., Kanehara T., Mori T. and Mori N., 2001. Metallization of magnetite (Fe3O4) under high pressure. J. Appl. Phys., 89, 7347–7349.

    Article  Google Scholar 

  • Ugalde H.A., Artemieva N. and Milkereit B., 2005. Magnetization on impact structures - Constraints from numerical modeling and petrophysics. Geol. Soc. Am. Spec. Pap., 384, 25–42.

    Google Scholar 

  • Vahle C. and Kontny A., 2005. The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii. Earth Planet. Sci. Lett., 238, 110–129.

    Article  Google Scholar 

  • Wittmann A., Goderis S., Claeys P., Vanhaecke F., Deutsch A. and Adolph L., 2013. Petrology of impactites from El’gygytgyn crater: Breccias in ICDP-drill core 1C, glassy impact melt rocks and spherules. Meteorit. Planet. Sci., 48, 1199–1235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Kontny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontny, A., Grothaus, L. Effects of shock pressure and temperature on titanomagnetite from ICDP cores and target rocks of the El’gygytgyn impact structure, Russia. Stud Geophys Geod 61, 162–183 (2017). https://doi.org/10.1007/s11200-016-0819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0819-3

Keywords

Navigation