Skip to main content
Log in

Remanent magnetization of maghemitized basalts from Krafla drill cores, NE-Iceland

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We investigated the natural remanent magnetization (Jr) of hydrothermally altered basalts from two drill cores KH1 (200 m) and KH3 (400 m) situated at the rim of the Krafla caldera in NE Iceland, where a geothermal field (>150°C) is still active. Low temperature oxidation along with mineral reactions in the chlorite zone (<350°C) is the prevailing cause for the maghemitization and a strong decrease of Jr to occur in our study. Despite a significant decrease of Jr with respect to fresh basalts in surface outcrops of the same area, the stepwise demagnetization analyses of Jr show the presence of a stable magnetic component with the expected inclination of 77° in Iceland. Because the alteration temperature (<350°C) is above the Curie temperatures of most of the original titanomagnetite (40°–350°C), we suggest that a normal direction of remanence is chemically acquired during the low temperature alteration. We observed only one reliable negative inclination at 293.2 m in the KH3 core, which we rather interpret to be acquired during a geomagnetic excursion with reverse polarity than caused by a self-reversal mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto S., Katsura T. and Yoshida M., 1957. Magnetic propertiesof the Fe2TiO4-Fe3O4 system and their change with oxidation. J. Geomagn. Geoelectr., 9, 165–168.

    Article  Google Scholar 

  • Bleil U. and Petersen N., 1983. Variations in magnetization intensity and low temperature titanomagnetite oxidation of ocean floor basalts. Nature, 301, 384–387.

    Article  Google Scholar 

  • Bleil U., Hall J.M., Johnson H.P., Levi S. and Schönharting G., 1982. The natural magnetization of a 3-kilometer section of Icelandic crust. J. Geophys. Res., 87, 6569–6589.

    Article  Google Scholar 

  • Bödvarsson G.S., Benson S.M., Sigurdsson Ó., Stéfansson V. and Elíasson E.T., 1984. The Krafla geothermal field, Iceland 1. Analysses of well test data. Water Resour. Res., 20, 1515–1530.

    Article  Google Scholar 

  • Brown A.P. and O’Reilly W., 1999. The magnetism and microstructure of pulverized titanomagnetite, Fe2.4Ti0.6O4; the effect of annealing, maghemitization and inversion. Phys. Earth Planet. Int., 116, 19–30.

    Article  Google Scholar 

  • Butler R.F., 1992. Paleomagnetism. Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, 319 pp.

  • Channell J.E.T., 2006. Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth Planet. Sci. Lett., 244, 378–393.

    Article  Google Scholar 

  • Cogné J.P., 2003. PaleoMac: A Macintosh™ application for treating paleomagnetic data and making plate reconstructions. Geochem. Geophys. Geosyst., 4, 1007, DOI: 10.1029/2001GC000227.

    Article  Google Scholar 

  • Cui Y., Verosub K.L. and Roberts A., 1994. The effect of low-temperature oxidation on large multidomain magnetite. Geophys. Res. Lett., 21, 757–760.

    Article  Google Scholar 

  • Dietze F., Kontny A., Heyde I. and Vahle C., 2011. Rock magnetic properties of basalt lithologies and subsurface modeling from magnetic field data for Reykjanes (SW-Iceland). Stud. Geophys. Geod., 55, 109–130.

    Article  Google Scholar 

  • Doubrovine P.V. and Tarduno J.A., 2004. Slef-reversal magnetization carried by titanomaghemite in oceanic basalts. Earth Planet. Sci. Lett., 222, 959–969.

    Article  Google Scholar 

  • Dunlop D.J. and Hale C.J., 1976. A determination of paleomagnetic field intensity using submarine basalts drilled near the Mid-Atlantic Ridge. J. Geophys. Res., 81, 4166–4172.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York.

    Book  Google Scholar 

  • Fisher R.A., 1953. Dispersion on a sphere. Proc. R. Soc. London A, 217, 295–305.

    Article  Google Scholar 

  • Gee J. and Kent D.V., 1994. Variations in layer 2A thickness and the origin of the central anomaly magnetic high. Geophys. Res. Lett., 21, 297–300.

    Article  Google Scholar 

  • Grommé S., Wright T.L. and Peck D.L., 1969. Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii. J. Geophys. Res., 74, 5277–5293.

    Article  Google Scholar 

  • Gudmundsson Á., 1993. Jarðlagasnið um holu BJ-11 og BJ-12 í Bjarnarflagi (Cross Section between Wells BJ-11 and BJ-12 in Bjarnarflag). The National Energy Authority Report OS-93071/JHD-35 B, Reykjavik, Iceland, 46 pp. (in Icelandic).

  • Hall J.M., 1977. Does TRM occur in oceanic layer 2 basalts? J. Geomagn. Geoelectr., 29, 411–419.

    Article  Google Scholar 

  • Hall J.M., 1985. The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic-type oceanic crust. Can. J. Earth Sci., 22, 85–101.

    Article  Google Scholar 

  • Hunslow M., 2007. Palaeomag-Tools, V.4.2: A tool for analysis of directional data. http://geography.lancs.ac.uk/cemp/resources/software/pmagtool.htm.

  • Irving E., 1970. The Mid-Atlantic Ridge at 45°N XIV. Oxidation and magnetic properties of basalt; review and discussion. Can. J. Earth Sci., 7, 1528–1538.

    Article  Google Scholar 

  • Kelso P., Banerjee S.K. and Worm H.U., 1991. The effect of low-temperature hydrothermal alteration on the remanent magnetization of synthetic titanomagnetites; a case for acquisition of chemical remanent magnetization. J. Geophys. Res., 96(B12), 19545–19553.

    Article  Google Scholar 

  • Kirschvink J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc., 62, 669–718.

    Google Scholar 

  • Kontny A., Vahle C. and de Wall H., 2003. Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2). Geochem. Geophys. Geosyst., 4, DOI: 10.1029/2002GC000304.

  • Krasa D., 2003. Self-Reversal of Remanent Magnetization of Basalts-Origin, Mechanisms and Consequences. Ph.D. Thesis, University of Munich, Munich, Germany, 144 pp.

    Google Scholar 

  • Krasa D. and Matzka J., 2007. Inversion of titanomaghemite in oceanic basalt during heating. Phys. Earth Planet. Inter., 160, 169–179.

    Article  Google Scholar 

  • Krasa D., Shcherbakov V., Kunzmann T. and Petersen N., 2005. Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int., 162, 115–136, DOI: 10.1111/j.1365-246X.2005.02656.x.

    Article  Google Scholar 

  • Kristjánsson L., 1993. Investigations on geomagnetic reversals in Icelandic lavas, 1953–78. Terra Nova, 5, 6–12.

    Article  Google Scholar 

  • Kristjánsson L., 2002. Estimating properties of the paleomagnetic field from Icelandic lavas. Phys. Chem. Herat, 27, 1205–1213.

    Google Scholar 

  • Kristjánsson L. and Jonsson G., 2007. Paleomagnetism and magnetic anomalies in Iceland. J. Geodyn., 43, 30–54

    Article  Google Scholar 

  • Lattard D., Engelmann R., Kontny A. and Suerzapf U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res., 111, B12S28, DOI: 10.1029/2006JB004591.

    Article  Google Scholar 

  • Marshall M. and Cox A., 1971. Effect of oxidation on the natural remanent magnetization of titanomagnetite in sub-oceanic basalt. Nature, 230, 28–31.

    Article  Google Scholar 

  • Marshall M. and Cox A., 1972. Magnetic changes in pillow basalt due to sea floor weathering. J. Geophys. Res., 77, 6459–6469.

    Article  Google Scholar 

  • McFadden P.L. and Reid A.B., 1982. Analysis of paleomagnetic inclination data. Geophys. J. R. Astron. Soc., 69, 307–319.

    Article  Google Scholar 

  • Nagata T., Uyeda S. and Akimoto S., 1952. Self-reversal of thermo-remanent magnetism of igneous rocks. J. Geomagn. Geoelectr., 4, 22–38.

    Article  Google Scholar 

  • Oliva-Urcia B., Kontny A., Vahle C. and Schleicher A.M., 2011. Modification of the magnetic mineralogy in basalts due to fluid-rock interactions in a high-temperature geothermal system (Krafla, Iceland). Geophys. J. Int., 186, 155–174, DOI: 10.1111/j.1365-246X.2011.05029.x.

    Article  Google Scholar 

  • Opdyke N.D. and Channel J.E.T., 1996. Magnetic Stratigraphy. International Geophysics Series 64, Academic Press, New York, 346 pp.

    Book  Google Scholar 

  • O’Reilly W. 1983. The identification of titanomaghemites: model mechanisms for the maghemitization and inversion processes and their magnetic consequences. Phys. Earth Planet. Inter., 31, 62–76.

    Google Scholar 

  • Özdemir Ö., 1987. Inversion of titanomaghemites. Phys. Earth Planet. Inter., 46, 184–196.

    Article  Google Scholar 

  • Özdemir Ö., Dunlop D.J. and Moskowitz B.M., 1993. The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett., 20, 1671–1674.

    Article  Google Scholar 

  • Özdemir Ö. and O’Reilly W., 1982. Magnetic hysteresis properties of synthetic monodomain titanomaghemites. Earth Planet. Sci. Lett., 57, 437–447.

    Article  Google Scholar 

  • Özdemir Ö. and Dunlop D.J., 1985. An experimental study of chemical remanent magnetizations of synthetic monodomain titanomaghemites with initial thermoremanent magnetizations. J. Geophys. Res., 90(B13), 11513–11523.

    Article  Google Scholar 

  • Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27, DOI: 10.1029/2006JB004507.

    Article  Google Scholar 

  • Readman P.W. and O’Reilly W., 1970. The synthesis and inversion of non-stoichiometric titanomagnetites. Phys. Earth Planet. Inter., 4, 121–128.

    Article  Google Scholar 

  • Readman P.W. and O’Reilly W., 1972. Magnetic properties of oxidized (cation-deficient) titanomagnetites, (Fe, Ti, [])3O4. J. Geomagn. Geolectr., 24, 69–90.

    Article  Google Scholar 

  • Saemundsson K. and Pringle M., 2003. Evolution of the Krafla Central volcano, north volcanic zone, Iceland. EOS Trans. AGU, 86(46), Abstract #2003AGUFM.V32D1052S.

  • Shau Y.H., Torii M., Horng C.S. and Liang W.T., 2004. Magnetic properties of mid-oceanic-ridgebasalts from Ocean Drilling Program LEG 187. In: Pedersen R.B., Christie D.M. and Miller D.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 187, 1–25.

  • Smith B., 1987. Consequences of the maghemitization on the magnetic properties of submarine basalts: synthesis of previous works and results concerning basement rocks from mainly D.S.D.P. Legs 51 and 52. Phys. Earth Planet. Inter., 46, 206–226.

    Article  Google Scholar 

  • Wang D. and Van der Voo R., 2004. The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth Planet. Sci. Lett., 220, 175–184.

    Article  Google Scholar 

  • Wang D., Van der Voo R. and Peacor D.R., 2006. Low-temperature alteration and magnetic changes of variably altered pillow basalts. Geophys. J. Int., 164, 25–35.

    Article  Google Scholar 

  • Worm H.U. and Banerjee S.K., 1984. Aqueous low-temperature oxidation of titanomagnetite. Geophys. Res. Lett., 11, 169–172.

    Article  Google Scholar 

  • Zhou W., Van der Voo R., Peacor D.R., Wang D. and Zhang Y., 2001. Low-temperature oxidation of titanomagnetite to titanomaghemite in MORB: a gradual process with implications for marine magnetic anomaly amplitudes. J. Geophys. Res., 106, 6409–6421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Oliva-Urcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva-Urcia, B., Kontny, A. Remanent magnetization of maghemitized basalts from Krafla drill cores, NE-Iceland. Stud Geophys Geod 56, 641–657 (2012). https://doi.org/10.1007/s11200-011-9013-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-9013-9

Keywords

Navigation