Skip to main content
Log in

Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW-Iceland)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

This study presents rock magnetic properties along with magnetic field measurements of different stratigraphic and lithologic basalt units from Reykjanes, the southwestern promontory of the Reykjanes peninsula, where the submarine Reykjanes Ridge passes over into the rift zone of southwestern Iceland. The basaltic fissure eruptions and shield lava of tholeiitic composition (less than 11500 a old) show a high natural remanent magnetization (NRM, Jr) up to 33.6 A/m and high Koenigsberger ratio (Q) up to 52.2 indicating a clear dominance of the NRM compared to the induced part of the magnetization. Pillow basalts and picritic shield lava show distinctly lower Jr values below 10 A/m. Magnetic susceptibility (κ) ranges for all lithologies from 2.5 to 26×10−3 SI.

Heterogeneously distributed titanomagnetite with small grain sizes is the main carrier of magnetization. Magnetic susceptibility vs. temperature (κ-T) curves reveal multiple Curie temperatures from 35 to 570 °C suggesting different Ti-concentrations in titanomagnetite. A minor oxidation to titanomaghemite is indicated by the irreversibility of some of the κ-T curves. Intra flow variation of the magnetic minerals is relatively high depending on crystallization history and resulting primary composition and amount of titanomagnetite as well as high-temperature oxidation.

The total geomagnetic field was measured for regional field variations along three profiles normal to the spreading zone at Reykjanes. These measurements along with the rock magnetic data and field observations were used for modeling the geological subsurface. The models are in agreement with a feeder dyke system related to the youngest Stampahraun 4 fissure eruption in the western part and a hydrothermally active fault system in the eastern part of Reykjanes. Furthermore, topographic features like fault scarps, pillow basalt — hyaloclastite ridges and shield lava are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acuña M.H. and 12 co-authors, 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 5415–5427.

    Google Scholar 

  • Angenheister G., Petersen N. and Schoenharting G., 1977. Zur Interpretation der Anomalien des Erdmagnetfeldes in Island, Ein Beitrag zur Interpretation der Streifenmuster der Magnetfeld-Anomalien in den Ozeanen. Fortschr. Miner., 54, 54–92 (in German).

    Google Scholar 

  • Bleil U., Hall J.M., Johnson H.P., Levi S. and Schoenharting G., 1982. The natural magnetization of a 3-kilometer section of Icelandic crust. J. Geophys. Res., 87(B8), 6569–6589.

    Article  Google Scholar 

  • Bleil U. and Petersen N., 1983. Variation in magnetization intensity and low temperature titanomagnetite oxidation of ocean floor basalts. Nature, 301, 384–388.

    Article  Google Scholar 

  • Franzson H., 1987. The Eldvorp High-Temperature Area, SW-Iceland. Geothermal Geology of First Exploration Well. National Energy Authority of Iceland, Reykjavik, Iceland, 179–185.

    Google Scholar 

  • Franzson H., Thordason S., Bjornsson G., Gudlaugsson S.Th., Richter B., Friedleifsson O. and Thorhallsson S., 2002. Reykjanes high-temperature field, SW-Iceland. Geology and hydrothermal alteration of well RN-10. Proceedings, Twenty-Seventh Workshop on Geothermal Reservoir-Engineering, SGP-TR-171. Stanford University, Stanford, CA, 233–240 (http://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2002/Franzson.pdf).

    Google Scholar 

  • Fridleifsson G.Ó., Ármannsson H., Árnason K., Bjarnason I.P. and Gíslason G., 2003. Iceland Deep Drilling Project, Part I: Geosciences — Site Selection. IDDP Feasibility Report, OS-2003-007 (http://www.iddp.is/wp-content/uploads/2003/11/Feasibility-Report/IDDP-FR-Part-1.pdf).

  • Fridleifsson G.Ó., Blischke A., Kristjánsson B.R., Richter B., Einarsson G.M., Jónasson H., Franzson H., Sigurdsson Ó., Danielsen P.E., Jónsson S.S., Thordarson S., Sverrir Thorhallsson S., Hardardóttir V. and Egilson Th., 2005. Reykjanes Well Report RN-17 & RN-17ST. ISOR-2005/007, ISBN 9979-780-26-6, Iceland Geosurvey, Reykjavik, Iceland.

    Google Scholar 

  • Gudmundsson A., 2000. Dynamics of volcanic systems in Iceland: Example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Annu. Rev. Earth Planet. Sci., 28, 107–140.

    Article  Google Scholar 

  • Gudmundsson A., 2002. Emplacement and arrest of sheets and dykes in central volcanoes. J. Volc. Geotherm. Res., 116, 279–298.

    Article  Google Scholar 

  • Gudmundsson A., 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci. Rev., 79, 1–31.

    Article  Google Scholar 

  • Gudmundsson A. and Brenner S.L., 2001. How hydrofractures become arrested? Terra Nova, 13, 456–462.

    Article  Google Scholar 

  • Gunnlaugsson H.P., Bendtsen L.S., Bertelsen P., Binau C.S., Gaarsmand J., Goetz W., Helgason Ö., Kristjánsson L., Knudsen J.M., Leer K., Madsen M.B., Nørnberg P., Steinbórsson S. and Weyer G., 2003. Magnetic anomalies in Iceland: implications for the magnetic anomalies on Mars. Sixth International Conference on Mars, Pasadena, Abs.No. 3025 (http://www.lpi.usra.edu/meetings/sixthmars2003/pdf/3025.pdf).

  • Hall J.M., 1985. The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic-type oceanic crust. Can. J. Earth Sci., 22, 85–101.

    Article  Google Scholar 

  • Jakobsson S.P., Jónsson J. and Shido F., 1978. Petrology of the western Reykjanes peninsula, Iceland. J. Petrol., 19, 669–705.

    Google Scholar 

  • Jónsson G., Kristjánsson L. and Sverrisson M., 1991. Magnetic surveys of Iceland. Tectonophysics, 189, 229–247.

    Article  Google Scholar 

  • Kletetschka G. and Kontny A., 2005. Identifications of magnetic minerals by scanning electron microscope and application of ferrofluid. Stud. Geopys. Geod.., 49, 153–162.

    Article  Google Scholar 

  • Kletetschka G., Wasilewski P.J. and Taylor P.T., 2000. Hematite vs. magnetite as the signature for planetary magnetic anomalies? Phys. Earth Planet. Inter., 119, 259–267.

    Article  Google Scholar 

  • Kontny A., Vahle C. and de Wall H., 2003. Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2). Geochem. Geophys. Geosyst., 4, Art.No. 8703, DOI: 10.1029/2002GC000304.

  • Kristjánsson L., 1970. Paleomagnetism and magnetic surveys in Iceland. Earth Planet. Sci. Lett., 8, 101–108.

    Article  Google Scholar 

  • Kristjánsson L., 1972. On the thickness of the magnetic crustal layer in SW Iceland. Earth Planet. Sci. Lett., 16, 237–244.

    Article  Google Scholar 

  • Kristjánsson L. and Watkins N.D., 1977. Magnetic studies of basalt fragments recovered by deep drilling in Iceland, and the “magnetic layer” concept. Earth Planet. Sci. Lett., 34, 365–374.

    Article  Google Scholar 

  • Kristjánsson L., Jónsson G. and Sverrisson M., 1989. Magnetic Surveys at the Science Institute. Report RH01.89. Science Institute University of Iceland, Raunvísindastofnun Háskólans Dunhaga 3, IS-107 Reykjavík, 40 pp.

  • Kristjánsson L. and Jonsson G., 2007. Paleomagnetism and magnetic anomalies in Iceland. J. Geodyn., 43, 30–54.

    Article  Google Scholar 

  • Lattard D., Engelmann R., Kontny A. and Sauerzapf U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system. Reassessment of some methodological and crystal chemical effects. J. Geophys. Res., 111, B12S28.

    Article  Google Scholar 

  • Matzka J., Krása D., Kunzmann T., Schult A. and Petersen N., 2003. Magnetic state of 10–40 Ma old ocean basalts and implications for natural remanent magnetization. Earth Planet. Sci. Lett., 206, 541–553.

    Article  Google Scholar 

  • Moskowitz B.M., Jackson M. and Kissel C., 1998. Low-temperature magnetic behavior of titanomagnetites. Earth Planet. Sci. Lett., 157, 141–149.

    Article  Google Scholar 

  • Oliva-Urcia B., Kontny A., Vahle C. and Schleicher A.M., 2007. Effect of hydrothermal alteration on rock magnetic properties from basalts in the Krafla geothermal field, Iceland. Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract GP21A-0100.

  • Pálmason G., Arnórsson S., Friedleifsson I.B., Kristmannsdóttir H., Saemundsson K., Stefánsson V., Steingrisson B., Tómasson J. and Kristjánsson, L., 1979. The Icelandic crust: evidence from drillhole data on structure and processes. In: Talwani M., Harrison C.G. and Hayes D.E. (Eds.), Deep Drilling Results in the Atlantic Ocean: Ocean Crust. AGU Maurice Ewing Series, Washington, D.C., 43–65.

  • Purucker M., Ravat D., Frey H., Voorhies C., Sabaka T. and Acuña M.H., 2000. An altitudenormalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27, 2449–2452.

    Article  Google Scholar 

  • Saemundsson K., 1995. Svartsengi, Eldvörp and Reykjanes Geological Map (Bedrock) 1:25000. Orkustofnun, Hitaveita Sudurnesja and Landmaelingar Iceland.

    Google Scholar 

  • Schoenharting G. and Ghisler M., 1982. Zones of polarity reversal of stable remanent magnetization within some basaltic flows of the Iceland Research Drilling Project core. J. Geophys. Res., 87(B8), 6591–6600.

    Article  Google Scholar 

  • Schoenharting G. and Hall J.M., 1982. Detailed susceptibility log of Iceland Research Drilling Project drill core, Reydarfjordur, eastern Iceland. J. Geophys. Res., 87(B8), 6601–6604.

    Article  Google Scholar 

  • Schouten H., Tivey M.A., Fornari D.J. and Cochran J.R., 1999. Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fastspreading mid-ocean ridge, the EPR at 9°30′-50′N. Earth Planet. Sci. Lett., 169, 37–50.

    Article  Google Scholar 

  • Searle R.C., Keeton J.A., Owens R.B., White R.S., Mecklenburgh R., Parsons B. and Lee S.M., 1998. The Reykjanes Ridge: structure and tectonics of a hot spot influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations. Earth Planet. Sci. Lett., 160, 463–478.

    Article  Google Scholar 

  • Thordarson T. and Larsen G., 2007. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J. Geodyn., 43, 118–152.

    Article  Google Scholar 

  • Vahle C., Kontny A., Gunnlaugsson H.P. and Kristjánsson L., 2007. The Stardalur magnetic anomaly revisited — new insights into a complex cooling and alteration history. Phys. Earth Planet. Inter., 164, 119–141.

    Article  Google Scholar 

  • Vine F.J. and Matthews D.H. 1963. Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.

    Article  Google Scholar 

  • Wessel P. and Smith W.H.F., 1998. New, improved version of Generic Mapping Tools released. EOS Trans. AGU, 79(47), 579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Kontny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietze, F., Kontny, A., Heyde, I. et al. Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW-Iceland). Stud Geophys Geod 55, 109–130 (2011). https://doi.org/10.1007/s11200-011-0007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0007-4

Keyword s

Navigation