Skip to main content
Log in

Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85–0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. J Paleolimnol 23:399–420. doi:10.1023/A:1008171418429

    Article  Google Scholar 

  • Battarbee RW (2000) Palaeolimnological approaches to climate change with special regard to the biological record. Quat Sci Rev 19:107–124. doi:10.1016/S0277-3791(99)00057-8

    Article  Google Scholar 

  • Belzile N, Joly HA, Li H (1997) Characterization of humic substances extracted from Canadian lake sediments. Can J Chem 75:14–27. doi:10.1139/v97-003

    Article  Google Scholar 

  • Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. John Wiley & Sons Ltd, Chichester, pp 423–451

    Google Scholar 

  • Bertaux J, Ledru M-P, Soubiés F, Sondag F (1996) The use of quantitative mineralogy linked to palynological studies in palaeoenvironmental reconstruction: the case study of the “Lagoa Campestre” lake, Salitre, Minas Gerais, Brazil. CR Acad Sci Paris 323(Series II):65–71

    Google Scholar 

  • Bigler C, Hall RI (2002) Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J Paleolimnol 27:97–115. doi:10.1023/A:1013562325326

    Article  Google Scholar 

  • Birks HJB, Frey DG, Deevey ES (1998) Review #1: Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Braguglia CM, Campanella L, Petronio BM, Scerbo R (1995) Sedimentary humic acids in the continental margin of the Ross sea (Antarctica). Int J Environ Anal Chem 60:61–70. doi:10.1080/03067319508027228

    Article  Google Scholar 

  • Calace N, Capolei M, Lucchese M, Petronio BM (1999) The structural composition of humic compounds as indicator of organic carbon sources. Talanta 49:277–284. doi:10.1016/S0039-9140(98)00370-1

    Article  Google Scholar 

  • Cohen AS, Soreghan MJ, Scholz CA (1993) Estimating the age of formation of lakes; an example from Lake Tanganyika East African Rift system. Geology 21:511–514. doi:10.1130/0091-7613(1993)021<0511:ETAOFO>2.3.CO;2

    Article  Google Scholar 

  • Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW, Williams DF (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769–771. doi:10.1038/378769a0

    Article  Google Scholar 

  • Conley DJ (1998) An interlaboratory comparison of the measurement of biogenic silica in sediments. Mar Chem 63:39–48. doi:10.1016/S0304-4203(98)00049-8

    Article  Google Scholar 

  • Conley DJ, Schelske CL (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: terrestrial, algal and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 281–293

    Chapter  Google Scholar 

  • Conley DJ, Sommer M, Meunier JD, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere. In: Ittekot V, Unger D, Humborg C, An NT (eds) The silicon cycle: human perturbations, impacts on aquatic systems. Island Press, Washington, DC, pp 13–28

    Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732. doi:10.1016/0016-7037(81)90006-5

    Article  Google Scholar 

  • Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society Monograph 4

  • Fuji N (1988) Palaeovegetation and palaeoclimate changes around Lake Biwa, Japan during the last ca. 3 million years. Quat Sci Rev 7:21–28. doi:10.1016/0277-3791(88)90090-X

    Article  Google Scholar 

  • Gaffey SJ (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 μm): calcite, aragonite, and dolomite. Am Mineral 71:151–162

    Google Scholar 

  • Gebhardt AC, Niessen F, Kopsch C (2006) Central ring structure identified in one of the world’s best-preserved impact craters. Geology 34:145–148. doi:10.1130/G22278.1

    Article  Google Scholar 

  • Geladi P, Dåbakk E (1999) Computational methods and chemometrics in near-ir spectroscopy. In: Tranter E et al (eds) Encyclopedia of spectroscopy and spectrometry. Elsevier Academic Press, pp, pp 343–349

    Google Scholar 

  • Geladi P, MacDougall D, Martens H (1985) Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 39:491–500. doi:10.1366/0003702854248656

    Article  Google Scholar 

  • Gendron-Badou A, Coradin T, Maquet J, Fröhlich F, Livage J (2003) Spectroscopic characterization of biogenic silica. J Non-Cryst Solids 316:331–337. doi:10.1016/S0022-3093(02)01634-4

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Article  Google Scholar 

  • Herbert TD, Brian AT, Burnett C (1992) Precise major component determination in deep-sea sediments using fourier transform infrared spectroscopy. Geochim Cosmochim Acta 56:1759–1763. doi:10.1016/0016-7037(92)90242-B

    Article  Google Scholar 

  • Kellner R, Mermet JM, Otto M, Widmer HM (eds) (1998) Analytical chemistry. Wiley VCH, Weinheim, Berlin, New York, Chichester, Brisbane, Singapore, Toronto

    Google Scholar 

  • Martens H, Næs T (1989) Multivariate calibration. John Wiley & Sons, New York

    Google Scholar 

  • Mecozzi M, Pietrantonio E (2006) Carbohydrates proteins and lipids in fulvic and humic acids of sediments and its relationships with mucilaginous aggregates in the Italian seas. Mar Chem 101:27–39. doi:10.1016/j.marchem.2006.01.001

    Article  Google Scholar 

  • Mecozzi M, Pietrantonio E, Amici M, Romanelli G (2001) Determination of carbonate in marine solid samples by FTIR-ATR spectroscopy. Analyst (Lond) 126:144–146. doi:10.1039/b009031j

    Article  Google Scholar 

  • Moenke HHW (1974) Silica, the three-dimensional silicates, borosilicates and beryllium silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society Monograph 4, pp 365–379

  • Müller PJ, Schneider J (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res 40:425–444. doi:10.1016/0967-0637(93)90140-X

    Article  Google Scholar 

  • Niessen F, Gebhardt AC, Kopsch C, Wagner B (2007) Seismic investigation of the El’gygytgyn impact crater lake (Central Chukotka, NE Siberia): preliminary results. J Paleolimnol 37:49–63. doi:10.1007/s10933-006-9022-9

    Article  Google Scholar 

  • Peck JA, King JW, Colman SM, Kravchinsky VA (1994) A rock-magnetic record from Lake Baikal, Siberia: evidence for late quaternary climate change. Earth Planet Sci Lett 122:221–238. doi:10.1016/0012-821X(94)90062-0

    Article  Google Scholar 

  • Renberg I (1991) The HON-Kajak sediment corer. J Paleolimnol 6:167–170

    Google Scholar 

  • Rickert D, Schlüter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455. doi:10.1016/S0016-7037(01)00757-8

    Article  Google Scholar 

  • Rosén P, Hammarlund D (2007) Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. Biogeosciences 4:975–984

    Article  Google Scholar 

  • Rosén P, Persson P (2006) Fourier-transform infrared spectroscopy (FTIRS), a new method to infer past changes in tree-line position and TOC using lake sediment. J Paleolimnol 35:913–923. doi:10.1007/s10933-005-5010-8

    Article  Google Scholar 

  • Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459. doi:10.1111/j.1365-2389.2007.00949.x

    Article  Google Scholar 

  • Sifeddine A, Fröhlich F, Fournier M, Martin L, Servant M, Soudies F, Turcq B, Suguio K, Volkmer-Ribeiro C (1994) La sedimentation lacustre indicateur de changements de paléoenvironments au cours des 30 000 derniéres années (Carajas, Amazonie, Brésil). C R Acad Sci Paris 318(Series II):1645–1652

    Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726. doi:10.1016/j.plaphy.2005.07.001

    Article  Google Scholar 

  • Vogel H, Rosén P, Wagner B, Melles M, Persson P (2008) Fourier transform infrared spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records. J Paleolimnol 40:689–702. doi:10.1007/s10933-008-9193-7

    Article  Google Scholar 

  • Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2008) A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol. doi:10.1007/s10933-008-9234-2

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society Monograph 4, pp 227–242

  • Williams DF, Peck J, Karabanov EB, Prokopenko AA, Kravchinsky V, King J, Kuzmin MI (1997) Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278:1114–1117. doi:10.1126/science.278.5340.1114

    Article  Google Scholar 

  • Wirrmann D, Bertaux J (2001) Late Holocene paleoclimatic changes in western central Africa inferred from mineral abundances in dated sediments from Lake Ossa (southwestern Cameroon). Quat Res 56:275–287. doi:10.1006/qres.2001.2240

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the EC Environment and Climate Research Programme (contract ENV4-CT97-0642, Climate and Natural Hazards), the Climate Impacts Research Centre (CIRC) via funding from EU Structural Funds and Swedish Regional Funds to the Environment and Space Research Institute in Kiruna. Daniel Conley was partially supported by an EU Marie Curie Action (COMPACT MEXC-CT-2006-042718) and the Crafoord Foundation. We thank Christian Bigler, Tom Korsman, Martin Melles and Ulf Segerström for providing lake sediments, Dan Hammarlund for providing TOC values for Makkasjön, Johannes Förster, Ulla Kokfelt, Nina Stenbacka and Thomas Westin for field and lab assistance and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rosén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosén, P., Vogel, H., Cunningham, L. et al. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. J Paleolimnol 43, 247–259 (2010). https://doi.org/10.1007/s10933-009-9329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9329-4

Keywords

Navigation