Skip to main content

Advertisement

Log in

Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A combination of carbon-to-nitrogen ratios (TOC/TN), Rock Eval-analyses, and stable isotope values of bulk nitrogen (δ15N) and organic carbon (δ13Corg) was used to characterize bulk organic matter (OM) of a piston core from the Patagonian maar lake Laguna Potrok Aike (Argentina) for the purpose of palaeoenvironmental reconstruction. Sedimentary data were compared with geochemical signatures of potential OM sources from Laguna Potrok Aike and its catchment area to identify the sources of sedimentary OM. Correlation patterns between isotopic data and TOC/TN ratios allowed differentiation of five distinct phases with different OM composition. Before 8470 calibrated 14C years before present (cal. yrs BP) and after 7400 cal. yrs BP, isotopic and organo-geochemical fingerprints indicate that the sediments of Laguna Potrok Aike consist predominantly of soil and diatom OM with varying admixtures of cyanobacterial and aquatic macrophyte OM. For a short phase of the early Holocene (ca. 8470–7400 cal. yrs BP), however, extremely high input of soil OM is implied by isotopic fingerprints. Previous seismic and geochronological results indicate a severe lake-level drop of 33 m below present-day shortly before 6590 cal. yrs BP. It is suggested that this lake level drop was accompanied by increased erosion of shore banks and channel incision enhancing soil OM deposition in the lake basin. Thus, isotopic data can be linked to hydrological variations at Laguna Potrok Aike and allow a more precise dating of this extremely low lake level. An isotopic mixing model was used including four different sources (soil, cyanobacteria, diatom and aquatic macrophyte OM) to model OM variations and the model results were compared with quantitative microfossil data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson L (1995) On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res Part I Oceanogr Res Pap 42:1675–1680. doi:10.1016/0967-0637(95)00072-E

    Article  Google Scholar 

  • Anselmetti FS, Ariztegui D, De Batist M, Gebhardt C, Haberzettl T, Niessen F et al Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology (in press)

  • Ariztegui D, Chondrogianni C, Lami A, Guilizzoni P, Lafargue E (2001) Lacustrine organic matter and the Holocene paleoenvironmental record of Lake Albano (central Italy). J Paleolimnol 26:283–292. doi:10.1023/A:1017585808433

    Article  Google Scholar 

  • Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49:1160–1172

    Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, New York, pp 527–570

    Google Scholar 

  • Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188

    Google Scholar 

  • Best EPH, Dassen JHA, Boon JJ, Wiegers G (1990) Studies on decomposition of Ceratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194:91–114

    Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi:10.1023/A:1008078222806

    Article  Google Scholar 

  • Delègue M-A, Fuhr M, Schwartz D, Mariotti A, Nasi R (2001) Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129:106–113. doi:10.1007/s004420100696

    Article  Google Scholar 

  • Ehleringer JR (1991) 13C/12C fractionation and its utility in terrestrial plant studies. In: Fry B (ed) Carbon isotope techniques. Academic Press, New York, pp 187–200

    Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580. doi:10.1038/35046058

    Article  Google Scholar 

  • Espie GS, Miller AG, Kandasamy RA, Canvin DT (1991) Active HCO3 transport in cyanobacteria. Can J Bot 69:936–944. doi:10.1139/b91-120

    Article  Google Scholar 

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J et al (1977) Méthode rapide de caractérisation des roches mères de leur potentiel pétrolier et de leur degré d’evolution. Rev Inst Fr Pet 32:23–42

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Rev Inst Fr Pet 40:755–784

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester, 328 pp

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  Google Scholar 

  • Filippi ML, Talbot MR (2005) The paleolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Quat Sci Rev 24:1303–1328. doi:10.1016/j.quascirev.2004.10.009

    Article  Google Scholar 

  • Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 283–333

    Chapter  Google Scholar 

  • Gilli A, Ariztegui D, Anselmetti F, McKenzie JA, Markgraf V, Hajdas I et al (2005) Mid-Holocene strengthening of the southern westerlies in South America—sedimentological evidences from Lago Cardiel, Argentina (49°S). Glob Planet Change 49:75–93. doi:10.1016/j.gloplacha.2005.05.004

    Article  Google Scholar 

  • Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883. doi:10.1139/cjfas-53-4-875

    Article  Google Scholar 

  • Haberzettl T, Fey M, Lücke A, Maidana NI, Mayr C, Ohlendorf C et al (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302. doi:10.1007/s10933-004-5331-z

    Article  Google Scholar 

  • Haberzettl T, Corbella H, Fey M, Janssen S, Lücke A, Mayr C et al (2007) Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310. doi:10.1177/0959683607076437

    Article  Google Scholar 

  • Haberzettl T, Kück B, Wulf S, Anselmetti F, Ariztegui D, Fey M et al (2008) Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 259:213–229. doi:10.1016/j.palaeo.2007.10.008

    Article  Google Scholar 

  • Hassan KM, Swineheart JB, Spalding RF (1997) Evidence for Holocene environmental change from C/N ratios, and δ13C and δ15N values in Swan Lake, western Sand Hills, Nebraska. J Paleolimnol 18:121–130. doi:10.1023/A:1007993329040

    Article  Google Scholar 

  • Havens KE, Hauxwell J, Tyler AC, Thomas S, McGlathery KJ, Cebrian J et al (2001) Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress. Environ Pollut 113:95–107. doi:10.1016/S0269-7491(00)00154-8

    Article  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Google Scholar 

  • Hollander DJ, McKenzie JA (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932. doi:10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2

    Article  Google Scholar 

  • Jenny B, Wilhelm D, Valero-Garcés BL (2003) The southern westerlies in Central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33°50′ S). Clim Dyn 20:269–280

    Google Scholar 

  • Kaushal S, Binford MW (1999) Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J Paleolimnol 22:439–442. doi:10.1023/A:1008027028029

    Article  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035. doi:10.1111/j.1365-3040.1992.tb01653.x

    Article  Google Scholar 

  • Kenney WF, Waters MN, Schelske CL, Brenner M (2002) Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes. J Paleolimnol 27:367–377. doi:10.1023/A:1016075012581

    Article  Google Scholar 

  • Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407

    Google Scholar 

  • Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185:369–382. doi:10.1016/S0012-821X(00)00381-2

    Article  Google Scholar 

  • Langford FF, Blanc-Valleron M-M (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull 74:799–804. doi:10.1306/20B23309-170D-11D7-8645000102C1865D

    Google Scholar 

  • Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi:10.1016/S0016-7037(02)00968-7

    Article  Google Scholar 

  • Lücke A, Brauer A (2004) Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 211:139–155

    Google Scholar 

  • Lüniger G, Schwark L (2002) Characterisation of sedimentary organic matter by bulk and molecular geochemical proxies: an example from Oligocene maar-type Lake Enspel, Germany. Sediment Geol 148:275–288. doi:10.1016/S0037-0738(01)00222-6

    Article  Google Scholar 

  • Mackie EA, Leng MJ, Lloyd JM, Arrowsmith C (2005) Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. J Quat Sci 20:303–312. doi:10.1002/jqs.919

    Article  Google Scholar 

  • Macko SA, Fogel(Estep) ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92. doi:10.1016/0009-2541(87)90196-3 (Isotope Geosc Section)

    Article  Google Scholar 

  • Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI et al (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227. doi:10.1016/j.palaeo.2005.06.001

    Article  Google Scholar 

  • Mayr C, Wille M, Haberzettl T, Fey M, Janssen S, Lücke A et al (2007) Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quat Sci Rev 26:579–584. doi:10.1016/j.quascirev.2006.11.013

    Article  Google Scholar 

  • McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 99–118

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289. doi:10.1016/S0146-6380(02)00168-7

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Kluwer Academic Publications, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Meyers PA, Leenheer MJ, Bourbonniere RA (1995) Diagenesis of vascular plant organic matter components during burial in lake sediments. Aquat Geochem 1:35–52. doi:10.1007/BF01025230

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176. doi:10.1016/0012-821X(74)90078-8

    Article  Google Scholar 

  • Oliva G, González L, Rial P, Livraghi E (2001) El ambiente en la Patagonia Austral. In: Borrelli P, Oliva G (eds) Ganadería Ovina Sustentable en la Patagonia Austral. INTA Centro Regional Patagonia Sur, Buenos Aires, pp 19–82

    Google Scholar 

  • Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23:598–604

    Google Scholar 

  • Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125

    Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climates of Central and South America. Elsevier, New York, pp 13–112

    Google Scholar 

  • Quay PD, Emerson SR, Quay BM, Devol AH (1986) The carbon cycle for Lake Washington—a stable isotope study. Limnol Oceanogr 31:596–611

    Article  Google Scholar 

  • Sand-Jensen K (1987) Environmental control of bicarbonate use among freshwater and marine macrophytes. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific, Oxford, pp 99–112

    Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H, Schwertmann U (1992) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analyses of sediments. Limnol Oceanogr 36:961–975

    Google Scholar 

  • Schelske CL, Carrick HJ, Aldridge FJ (1995) Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? J N Am Benthol Soc 14:616–630. doi:10.2307/1467545

    Article  Google Scholar 

  • Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154. doi:10.1023/A:1023270324800

    Article  Google Scholar 

  • Schubert CJ, Calvert SE (2001) Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Res Part I Oceanogr Res Pap 48:789–810. doi:10.1016/S0967-0637(00)00069-8

    Article  Google Scholar 

  • Spence DHN, Maberly SC (1985) Occurrence and ecological importance of HCO3 use among aquatic higher plants. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. Am Soc Plant Physiol, Rockville, pp 125–143

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Talbot MR, Livingstone DA (1989) Hydrogen Index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr Palaeoclimatol Palaeoecol 70:121–137. doi:10.1016/0031-0182(89)90084-9

    Article  Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37. doi:10.1016/0012-821X(92)90036-U

    Article  Google Scholar 

  • Talbot MR, Lærdal T (2000) The Late Pleistocene—Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164. doi:10.1023/A:1008029400463

    Article  Google Scholar 

  • Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813

    Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372. doi:10.1146/annurev.es.13.110182.002025

    Article  Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, Berlin

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Wada E (1980) Nitrogen isotope fractionation and its significance in biogeochemical processes occuring in marine environments. In: Goldberg ED, Horibe Y, Saruhashi (eds) Isotope marine chemistry. Uchida Rokakuho, Tokyo, pp 375–398

    Google Scholar 

  • Wada E, Hattori A (1976) Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim Cosmochim Acta 40:249–251. doi:10.1016/0016-7037(76)90183-6

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology—lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Wilkes H, Ramrath A, Negendank JFW (1999) Organic geochemical evidence for environmental changes since 34,000 yrs BP from Lago di Mezzano, central Italy. J Paleolimnol 22:349–365. doi:10.1023/A:1008051821898

    Article  Google Scholar 

  • Wille M, Maidana NI, Schäbitz F, Fey M, Haberzettl T, Janssen S et al (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246. doi:10.1016/j.revpalbo.2007.05.001

    Article  Google Scholar 

  • Zolitschka B, Schäbitz F, Lücke A, Corbella H, Ercolano B, Fey M et al (2006) Crater lakes of the Pali Aike Volcanic Field as key sites for paleoclimatic and paleoecological reconstructions in southern Patagonia, Argentina. J S Am Earth Sci 21:294–309. doi:10.1016/j.jsames.2006.04.001

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Wissel for assistance with isotope analyses and to S. Stahl for elemental analyses. The authors thank H. Kling for inspiring discussions about and determination of cyanobacteria. L. Hedenäs is thanked for determining aquatic mosses. Logistic support by C. Kennard, J. Moreteau, and G. Oliva is gratefully acknowledged. The article benefited greatly from the suggestions of P. Meyers and an anonymous reviewer and we thank T. Whitmore for editorial handling. This research was financially supported by the German Federal Ministry of Education and Research in the framework of the German Climate Research Program DEKLIM (Grants 01 LD 0034 and 0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Mayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayr, C., Lücke, A., Maidana, N.I. et al. Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42, 81–102 (2009). https://doi.org/10.1007/s10933-008-9249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9249-8

Keywords

Navigation