Skip to main content

Advertisement

Log in

Assembly and concept of a web-based GIS within the paleolimnological project CONTINENT (Lake Baikal, Russia)

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Web-based Geographical Information Systems (GIS) are excellent tools within interdisciplinary and multi-national geoscience projects to exchange and visualize project data. The web-based GIS presented in this paper was designed for the paleolimnological project ‘High-resolution CONTINENTal paleoclimate record in Lake Baikal’ (CONTINENT) (Lake Baikal, Siberia, Russia) to allow the interactive handling of spatial data. The GIS database combines project data (core positions, sample positions, thematic maps) with auxiliary spatial data sets that were downloaded from freely available data sources on the world wide web. The reliability of the external data was evaluated and suitable new spatial datasets were processed according to the scientific questions of the project. GIS analysis of the data was used to assist studies on sediment provenance in Lake Baikal, or to help answer questions such as whether the visualization of present-day vegetation distribution and pollen distribution supports the conclusions derived from palynological analyses. The refined geodata are returned back to the scientific community by using online data publication portals. Data were made citeable by assigning persistent identifiers (DOI) and were published through the German National Library for Science and Technology (TIB Hannover, Hannover, Germany).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander W, Berlin J, Cyr P, Schofield A, Platt L (2004) Realities at the leading edge of research—good practice and proper conduct in research pay off, scientifically and economically. EMBO Rep 5:324–329

    Article  CAS  Google Scholar 

  • Bezrukova YV (1999) Paleogeography of Pribaikalia in the postglacial and Holocene (Paleogeografia Pribaikalya v Pozdnelednikovye i Golotsenye). Novosibirsk Nauka, Novosibirsk, Russia, p 129 (in Russian)

    Google Scholar 

  • Boyle JF (2004) Inorganic geochemical methods in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Physical and geochemical methods, Kluwer, Dordrecht, pp 83–141

    Google Scholar 

  • Brase J (2004) Using digital library techniques—registration of scientific primary data. Lect Notes Comp Sci 3232:488–494

    Article  Google Scholar 

  • Butler D (2006) Virtual globes: the web-wide world. Nature 439:776–778

    Article  CAS  Google Scholar 

  • Charlet F, Fagel N, de Batist M, Hauregard F, Minnebo B, Meischner D, The SONIC Team (2005) Sedimentary dynamics on isolated highs in Lake Baikal: evidence from detailed high-resolution geophysical data and sediment cores. Glob Planet Change 46:125–143

  • Delvaux D, Stapel R, Petit C, Levi K, Miroshnichenko A, Ruzhich V, San’kov V (1997) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2: Cenozoic rifting. Tectonophysics 282:1–38

    Article  Google Scholar 

  • Demory F, Nowaczyk NR, Bluszcz A, Demske D, Granoszewski W, Witt A, Oberhänsli H (2005) High-resolution magnetostratigraphy of late quaternary sediments from Lake Baikal, Siberia: age models and time lag between marine and intracontinental climatic responses. Glob Planet Change 46:167–186

    Article  Google Scholar 

  • Demske D, Heumann G, Granoszewski W, Nita M, Mamakowa K, Tarasov PE, Oberhänsli H (2005) Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Glob Planet Change 46:255–279

    Article  Google Scholar 

  • Diepenbroek M, Grobe H, Reinke M, Schindler U, Schlitzer R, Sieger R, Wefer G (2002) PANGAEA—an information system for environmental sciences. Comput Geosci 28:1201–1210

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Muehlenberg M (2005) Vegetation at the taiga forest-steppe borderline in the western Khentey Mountains, northern Mongolia. Ann Bot Fenn 40:411–426

    Google Scholar 

  • Ermakov N, Cherosov M, Gogoleva P (2002) Classification of ultracontinental boreal forests in central Yakutia. Folia Geobot 37:419–440

    Article  Google Scholar 

  • Fagel N, Thamo-Bózsó E, Heim B (2007) Mineralogical signatures of Lake Baikal sediments: Sources of sediment supplies through Late Quaternary. Sediment Geol 194:37–59

    Article  CAS  Google Scholar 

  • Fersman AY (1926) Mongol-Okhotsk metallic belt. Surf Bow 4:28–38

    Google Scholar 

  • Fietz S, Nicklisch A (2004) An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal. Freshw Biol 49:332–345

    Article  Google Scholar 

  • Fietz S, Nicklisch A, Oberhänsli H (2007) Phytoplankton response to climate changes in Lake Baikal during the Holocene and Kazantsevo Interglacials assessed from sedimentary pigments. J Paleolimnol 37:177–203

    Article  Google Scholar 

  • Fietz S, Sturm M, Nicklisch A (2005) Flux of lipophilic photosynthetic pigments to the surface sediments of Lake Baikal. Glob Planet Change 46:29–44

    Article  Google Scholar 

  • Flower RJ (1998) Paleolimnology and recent environmental change in Lake Baikal: an introduction and overview of interrelated concurrent studies. J Paleolimnol 20:107–117

    Article  Google Scholar 

  • Flower RJ, Ryves D, Battarbee RW, Mueller J, Sturm M (1999) Lake Baikal: some topical aspects of current research. J Paleolimnol 22:223–224

    Article  Google Scholar 

  • Galasy GI (1993) Baikal Atlas. Russ. Acad. of Sciences, Moscow, p 160

  • Granoszewski W, Demske D, Nita M, Heumann G, Andreev AA (2005) Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal. Glob Planet Change 46:187–198

    Article  Google Scholar 

  • Heim B, Oberhänsli H, Fietz S, Kaufmann H (2005) Variation in Lake Baikal’s phytoplankton distribution and fluvial input assessed by SeaWiFS satellite data. Glob Planet Change 46:9–27

    Article  Google Scholar 

  • Horiuchi K, Minoura K, Hoshino K, Oda T, Nakamura T, Kawai T (2000) Palaeoenvironmental history of Lake Baikal during the last 23000 years. Paleogeogr Paleoclimatol Paleoecol 157:95–108

    Article  Google Scholar 

  • Hutchinson DR, Golmshtok AJ, Zonenshain LP, Moore TC, Scholz CA, Klitgord KD (1992) Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20:589–592

    Article  Google Scholar 

  • Isachenko TI (1990) Vegetation of the USSR. Government Administration for Geodesy and Cartography, Moscow, USSR (in Russian)

    Google Scholar 

  • Jansin AL, Zajcev IS, Kovalenko VI, Juvsandanzan B, Lusickiy IV, Jarmolyuk VV (1989) Map of geological formations of Mongolia. Government Administration for Geodesy and Cartography, Moscow, USSR (in Russian)

    Google Scholar 

  • Kalinin VA, Moiseeva EG (1981) Petrological map of geological formations of the USSR. In: Sciences RAO (ed) Geological ministry of USSR. USSR, Moscow (in Russian)

    Google Scholar 

  • Karabanov EB, Propenko AA, Williams DF, Khursevich GK (2000) Evidence for mid-Eemian cooling in continental climatic record from Lake Baikal. J Paleolimnol 23:365–371

    Article  Google Scholar 

  • Kasik SA, Mazilov VN (1997) Lithology of Quaternary sediments of the borehole sections in the catchment area of Lake Baikal. Litol Polezn Iskop 5:484–491 (in Russian)

    Google Scholar 

  • Klump J, Bertelmann R, Brase J, Diepenbroek M, Grobe H, Hoeck H, Lautenschlager M, Schindler U, Sens I, Waechter J (2006) Data publication in the open access initiative. Data Sci J 5:79–83

    Article  CAS  Google Scholar 

  • Klump J, Schneider S (2004) Anwendung von GIS für den vergleich der regionalen vegetation mit der verteilung von pollen im Baikalsee. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte geoinformatik 2004-16 AGIT, Salzburg, Austria. Herbert Wichmann Verlag, Heidelberg, pp 354–358

    Google Scholar 

  • Koehler W (2004) A longitudinal study of Web pages continued: a report after six years. Inf Res 9

  • Lawrence S, Coetzee F, Glover E, Pennock D, Flake G, Nielsen F, Krovetz R, Kruger A, Giles L (2001) Persistence of web references in scientific research. IEEE Comput 34:26–31

    Google Scholar 

  • Lomonosov IS, Antipin VS, Lomonosova TK, Gapon AE (2001) Comparison of the composition and geochemical features of bedrocks and solid runoff of big rivers in the Baikal catchment basin. Geol Geofiz 42:278–297 (in Russian)

    CAS  Google Scholar 

  • Lyon SW, Lembo AJ, Walter MT, Steenhuis TS (2006) Internet mapping tools make scientific applications easy. EOS Trans 87:386

    Google Scholar 

  • McCarthy FMG, McAndrews JH, Blasco SM, Tiffin SH (2007) Spatially discontinuous modern sedimentation in Georgian Bay, Huron Basin, Great Lakes. J Paleolimnol 37:453–470

    Article  Google Scholar 

  • O’Sullivan PE, Heathwaite A, Appleby PG, Brookfield D, Crick MW, Moscrop C, Mulder T, Vernon N, Wilmshurst JM (1991) Paleolimnology of Slapton Ley, Devon, UK. Hydrobiologia 214:115–124

    Article  Google Scholar 

  • Oberhänsli H, Mackay AW (2005) Introduction to ‘Progress towards reconstructing past climate in Central Eurasia, with special emphasis on Lake Baikal’. Glob Planet Change 46:1–7

    Article  Google Scholar 

  • Paskin N (2005) Digital object identifiers for scientific data. Data Sci J 4:12–20

    Article  CAS  Google Scholar 

  • Pienitz R, Smol JP (1993) Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269–270:391–404

    Article  Google Scholar 

  • Piotrowska N, Bluszcz A, Demske D, Granoszewski W, Heumann G (2004) Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments. Radiocarbon 46:181–187

    CAS  Google Scholar 

  • Rylkov VF (1996) Forest fires in the eastern Trans-Baikal Region and elimination of their consequences. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia. Kluwer, Dordrecht, pp 219–226

    Google Scholar 

  • Sakaguchi A, Yamamoto M, Sasaki K, Kashiwaya K (2006) Uranium and thorium isotope distribution in an offshore bottom sediment core of the Selenga Delta, Lake Baikal, Siberia. J Paleolimnol 35:807–818

    Article  Google Scholar 

  • Sakai T, Minoura K, Soma M, Tani Y, Tanaka A, Nara F, Itoh N, Kawai T (2005) Influence of climate fluctuation on clay formation in the Baikal drainage basin. J Paleolimnol 33:105–121

    Article  Google Scholar 

  • Sapota T, Aldahan A, Al-Aasm IS (2006) Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J Paleolimnol 36:245–257

    Article  Google Scholar 

  • Schnurrenberger DW, Kelts KR, Johnson TC, Shane LCK, Ito E (2001) National lacustrine core repository (LacCore). J Paleolimnol 25:123–127

    Article  Google Scholar 

  • Soma Y, Tani Y, Soma M, Mitake H, Kurihara R, Hashmoto S, Watanbe T, Nakamura T (2007) Sedimentary steryl chlorin esters (SCEs) and other photosynthetic pigments as indicators of paleolimnological change over the last 28,000 years from the Buguldeika Saddle of Lake Baikal. J Paleolimnol 37:163–175

    Article  Google Scholar 

  • Straskrabova V, Izmest’yeva LR, Maksimova EA, Fietz S, Nedoma J, Borovec J, Kobanova G I, Shchetinia EV, Pislegina EV (2005) Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Glob Planet Change 46:57–73

    Article  Google Scholar 

  • Sturm M, Vologina EG, Levina OV, Flower RJ, Ryves DB, Lees JA (1998) Hemipelagic sedimentation and turbidites in the active tectonic basin of Lake Baikal. INTAS Active Tectonic Continental Basins—Interaction between sedimentary and structural processes, Gent, Belgium, pp 33–34

    Google Scholar 

  • Swann GEA, Mackay AW (2006) Potential limitations of biogenic silica as an indicator of abrupt climate change in Lake Baikal, Russia. J Paleolimnol 36:81–89

    Article  Google Scholar 

  • Swiercz S (2004) Charakterisierung des Baikalsee Einzugsgebietes (Sibirien) unter Anwendung von GIS-Analysen. Free University of Berlin, Germany

    Google Scholar 

  • Swiercz S, Heim B, Pekdeger A, Oberhänsli H (2003) GIS supported characterization of the Lake Baikal catchment area. In: Proceedings of the international symposium environment change central Asia: climate, geodynamics, evolution, human impact. Free University of Berlin, Berlin, Germany, pp 116–118

  • Tabios IGQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21:365–380

    Google Scholar 

  • Tarasov PE, Granoszewski W, Bezrukova E, Brewer S, Nita M, Abzaeva A, Oberhänsli H (2005) Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. Clim Dyn 25:625–637

    Article  Google Scholar 

  • Tarasov PE, Volkova VS, Webb IT, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from Northern Eurasia. J Biogeogr 27:609–620

    Article  Google Scholar 

  • Tarasov PE, Webb T III, Andreev AA, Afanas’eva NB, Berezina NA, Bezusko LG, Blyakharchuk TA, Bolikhovskaya NS, Cheddadi R, Chernavskaya MM, Chernova GM, Dorofeyuk NI, Dirksen VG, Elina GA, Filimonova LV, Glebov FZ, Guiot J, Gunova VS, Harrison SP, Jolly D, Khomutova VI, Kvavadze EV, Osipova IM, Panova NK, Prentice IC, Saarse L, Sevastyanov DV (1998) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1029–1053

    Article  Google Scholar 

  • Wallrabe-Adams H-J, Huber R, Klump J, Conze R, Graham C, Krysiak F (2006) Joint ICDP and IODP data management for MSP expeditions. In: Deutsche Forschungsgemeinschaft DFG (ed) IODP-ICDP 2006. Greifswald, Germany

  • Williams DF, Peck J, Karabanov EB, Propenko AA, Kravchinsky V, Kuzmin MI (1997) Lake Baikal record of continental climate response to orbital insulation during the past 5 million years. Science 278:1114–1117

    Article  CAS  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Napatov LM (1990) Geology of the USSR: a plate-tectonic synthesis. Stanford University, Stanford, USA, p 242

    Google Scholar 

Download references

Acknowledgements

The project ‘High Resolution CONTINENTal Paleoclimate Record in Lake Baikal, Siberia’ was supported by the European Commission under the Fifth Framework Programme (Contract EVK2-2000-00057). The project ‘Publication and citation of scientific and technical data’ is supported by the German Science Foundation, Div. Libraries and Information Systems (LIS4-55495(1) Hamburg BIB 46 Hhmpi 01). B. Heim gratefully acknowledges support by the ‘Program for Equal Opportunities for Women in Research’ granted by the Senate of Berlin, Germany. We would like to thank E. Thamó-Bózsó, Geological Institute of Hungary for the heavy mineral analysis. We are grateful to S. Swiercz from the hydrogeological working group of Prof. Peckdeger (Free University of Berlin, Germany) and S. Schneider, A. Schulze, G. Dachnowski, F. Kramer, P. Burgess and the technical staff of the GeoForschungsZentrum Potsdam Data Centre for their contributions to the Baikal GIS. We are also indebted to two anonymous reviewers for their reviews and suggestions which improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Heim.

Appendices

Appendix 1

Acronyms

DCW

Digital Chart of the World (ESRI product)

1DFG

Deutsche Forschungsgesellschaft (German Science Foundation); 1project ‘Chemical, isotopic, and mineralogical proxy data for eolian input into the Lake Baikal system during the last 150 ka’

EAWAG

Swiss Federal Institute for Environmental Science and Technology, Switzerland

ESRI

Environmental Systems Research Institute

FAO

Food and Agriculture organization of the United Nations

GEOPASS

Geochemistry, Particle Formation and Sediment Sources of Lake Baikal

GMT

Generic Mapping Tools

IIASA

International Institute for Applied Systems Analysis

INTAS

International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union

RCMG

Renard Centre of Marine Geology, Ghent, Belgium

USGS

United States Geological Survey

Appendix 2

DOIs are resolved to URLs through any Handle.Net server. DOI-Prefixes are listed under http://dx.doi.org/. Use, for example, http://dx.doi.org/10.1594/GFZ.SDDB.1202/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heim, B., Klump, J., Oberhänsli, H. et al. Assembly and concept of a web-based GIS within the paleolimnological project CONTINENT (Lake Baikal, Russia). J Paleolimnol 39, 567–584 (2008). https://doi.org/10.1007/s10933-007-9131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9131-0

Keywords

Navigation