Skip to main content

Advertisement

Log in

Luminescence geochronology for sediments from Lake El’gygytgyn, northeast Siberia, Russia: constraining the timing of paleoenvironmental events for the past 200 ka

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This study focused on the luminescence dating of sediments from Lake El’gygytgyn, a meteorite impact crater 100 km north of the Arctic Circle in northeast Siberia, formed 3.58 Ma ago. The sediment is principally eolian deposited in to a lake with nearly permanently ice. The fine-grained polymineral and quartz extracts taken from nine distinct levels from the upper 12.3 m of sediment core PG1351 were dated by infrared stimulated (IRSL) and green stimulated luminescence (GSL) using multiple aliquot additive dose procedures. The veracity of these ages is evaluated by comparing to an age model for the core derived from magnetic excursions and from correlation of variations of the magnetic susceptibility record to similar magnitude variations in δ 18O in the Greenland Ice core record. The IRSL ages from the upper 9 m of core correspond well with the independent age control for the past ca. 200 ka. However, sediments deeper in the core at 12.3 m with an inferred age of ca. 250 ka age yield a saturated IRSL response and therefore a non-finite OSL age. The youngest sediment dated from 0.70 m depth yielded the IRSL age of ca. 11.5 ka, older than the corresponding age of 9.3–8.8 ka, indicating a discrepancy in dating the youngest sediments in the upper 1 m of core. This study confirms the utility of IRSL by the multiple aliquot additive dose method to date sediments <200 ka old from eastern Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken MJ (1985) Thermoluminescence dating. Academic Press, New York, 359 pp

    Google Scholar 

  • Aitken MJ (1998) An introduction to optical dating: the dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, New York, 267 pp

    Google Scholar 

  • Aitken MJ, Bowman SGE (1975) Thermoluminescent dating: assessment of alpha particle contribution. Archaeometry 17:132–138

    Google Scholar 

  • Balescu S, Lamothe M (1992) The blue emissions of K-feldspar coarse grains and its potential for overcoming TL age underestimates. Quat Sci Rev 11:45–51

    Article  Google Scholar 

  • Balescu S, Lamothe M (1994) Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments. Quat Sci Rev 13:437–444

    Article  Google Scholar 

  • Berger GW (2003) Luminescence chronology of late Pleistocene loess-paleosol and tephra sequences near Fairbanks, Alaska. Quat Res 60:70–83

    Article  Google Scholar 

  • Berger GW, Anderson PM (2000) Extending the geochronometry of arctic lake cores beyond the radiocarbon limit by using thermoluminescence. J Geophys Res 105(D12):15439–15455

    Article  CAS  Google Scholar 

  • Berger GW, Mulhern PJ, Huntley DJ (1980) Isolation of silt-sized quartz from sediments. Ancient TL 11:8–9

    Google Scholar 

  • Berger G, Pillans BJ, Palmer AS (1994) Test of thermoluminescence dating of loess from New Zealand and Alaska. Quat Sci Rev 13:309–333

    Article  Google Scholar 

  • Berger GW, Melles M, Banerjee D, Murray AS, Raabs A (2004) Luminescence chronology of non-glacial sediments in Changeable Lake, Russian High Arctic, and implications for limited Eurasian ice-sheet extent during the LGM. J Quat Sci 19:513–523

    Article  Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Bradley RS (1990) Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian High Arctic. Quat Sci Rev 9:365–384

    Article  Google Scholar 

  • Brigham-Grette J (2001) New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history. Quat Sci Rev 20:15–24

    Article  Google Scholar 

  • Brigham-Grette J, Gaultieri L, Glushkova OY, Hamilton TD, Mostoller D, Kotov A (2003) Chlorine-36 and C-14 chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet. Quat Res 59:386–398

    Article  CAS  Google Scholar 

  • Brigham-Grette J, Cosby C, Apfelbaum MG, Nolan M (2001) The Lake El’gygytgyn sediment core—a 300 ka climate record of the terrestrial Arctic. Eos Trans AGU 82(47):F752

    Google Scholar 

  • Brigham-Grette J, Glushkova O, Minyuk P, Melles M, Overduin PP, Nowaczyk N, Nolan M, Stone D, Layer P (1998) Preliminary lake coring results from El’gygytgyn Crater, Eastern Siberia. Eos Trans AGU 79(45):F477

    Google Scholar 

  • Duller GAT (2000) Dating methods: geochronology and landscape evolution. Prog Phys Geog 24:111–116

    Article  Google Scholar 

  • Duller GAT (2004) Luminescence dating of Quaternary sediments: recent advances. J Quat Sci 19:183–192

    Article  Google Scholar 

  • Forman SL (1999) Infrared and red stimulated luminescence dating of late Quaternary near-shore sediments from Spitsbergen, Svalbard. Arctic, Antarctic, Alpine Res 31:34–49

    Article  Google Scholar 

  • Forman SL, Pierson J (2002) Late Pleistocene luminescence chronology of loess deposition in the Missouri and Mississippi river valleys, United States. Palaeogeog Palaeoclim Palaeoecol 186:25–46

    Article  Google Scholar 

  • Forman SL, Pierson J, Lepper K (2000) Luminescence Geochronology. In: Sowers JM, Noller JS and Lettis WR (eds) Quaternary geochronology: methods and applications. American Geophysical Union Reference Shelf 4; Washington, DC, pp 157–176

  • Frechen M, Yamskikh AF (1999) Upper Pleistocene loess stratigraphy in the southern Yenisei Siberia area. J␣Geol Soc 156:515–525

    Google Scholar 

  • Frechen M, van Vliet-Lanoe B, van den Haute P (2001) The Upper Pleistocene loess record at Harmignies/Belgium—high resolution terrestrial archive of climate forcing. Palaeogeog Palaeoclim Palaeoecol 173:175–195

    Article  Google Scholar 

  • Gualtieri L, Glushkova O, Brigham-Grette J (2000) Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern Russia. Geol Soc Amer Bull 112:1106–1118

    Article  CAS  Google Scholar 

  • Gaultieri L, Vartanyan S, Brigham-Grette J, Anderson PM (2003) Pleistocene raised marine deposits on Wrangel Island, northeast Siberia and implications for the presence of an East Siberian ice sheet. Quat Res 59:399–410

    Article  CAS  Google Scholar 

  • Godfrey-Smith DI, Huntley DJ, Chen W-H (1988) Optical dating studies of quartz and feldspar sediment extracts. Quat Sci Rev 7:373–380

    Article  CAS  Google Scholar 

  • Grün R (1996) Errors in dose assessment introduced by the use of the “linear part” of a saturating dose response curve. Rad Meas 26:297–302

    Article  Google Scholar 

  • Heiser P, Roush JJ (2001) Pleistocene glaciations in Chukotka, Russia: moraine mapping using satellite synthetic aperture radar (SAR) imagery. Quat Sci Rev 20:393–404

    Article  Google Scholar 

  • Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci 38:1093–1106

    Article  CAS  Google Scholar 

  • Huntley DJ, Berger GW, Bowman SGE (1987) Thermoluminescence response to alpha and beta irradiations, and age determinations when the dose response is non-linear. Nucl Trac Rad Eff 105:279–284

    Google Scholar 

  • Hütt G, Jaek I, Tchonka J (1988) Optical Dating: K-feldspars optical response stimulation spectra. Quat Sci Rev 7:381–385

    Article  Google Scholar 

  • Kaufman DK, Forman SL, Lea PD, Wobus CW (1996) Age of pre-late Wisconsin glacial-estuarine sedimentation, Bristol Bay, Alaska. Quat Res 45:59–72

    Article  Google Scholar 

  • Kaufman DK, Manley WF, Forman SL, Layer PW (2001) The last interglacial to glacial transition, Togiak Bay, southwestern Alaska. Quat Res 55:190–202

    Article  CAS  Google Scholar 

  • Kutzbach JE, Gallimore R, Harrison S, Behling P, Selin R, Laarif F (1998) Climate and biome simulations for the past 21,000 years. Quat Sci Rev 17:473–506

    Article  Google Scholar 

  • Lang A (1994) Infrared stimulated luminescence dating of Holocene reworked silty sediments. Quat Sci Rev 13:525–528

    Article  Google Scholar 

  • Lang A, Wagner GA (1996) Infrared stimulated luminescence dating of archaeosediments. Archaeometry 38:129–141

    Google Scholar 

  • Layer P (2000) Argon-40/Argon-39 age of the El’gygytgyn impact event, Chukotka, Russia. Meteorit Planet Sci 35:591–599

    Article  CAS  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Indust Appl Math 11:431–441

    Article  Google Scholar 

  • Mejdahl V (1988) The plateau method for dating partially bleached sediments by thermoluminescence. Quat Sci Rev 7:347–348

    Article  Google Scholar 

  • Mejdahl V, Christiansen HH (1994) Procedures used for luminescence dating of sediments. Boreas 13:403–406

    Google Scholar 

  • Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Rad Meas 32:57–73

    Article  CAS  Google Scholar 

  • Nolan M, Brigham-Grette J (2007) Basic hydrology, limnology, and meteorology of modern Lake El’gygytgyn, Siberia. J Paleolimnol. DOI 10.1007/s10933-006-9020-y (this issue)

  • Nolan M, Liston G, Prokein P, Brigham-Grette J, Sharpton VL, Huntzinger R (2002) Analysis of lake ice dynamics and morphology on Lake El’gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat. J Geophys Res-Atm 108:8162

    Google Scholar 

  • Nowaczyk NR, Melles M (2007) A revised age model for␣core PG1351 from Lake El’gygytgyn, Chukotka, based on magnetic susceptibility variations correlated to northern hemisphere insolation variations. J Paleolimnol DOI 10.1007/s10933-006-9023-8 (this issue)

  • Nowaczyk NR, Minyuk P, Melles M, Brigham-Grette J, Glushkova O, Nolan M, Lozhkin AV, Stetsenko TV, Anderson P, Forman SL (2002) Magnetostratigraphic results from impact crater Lake El’gygytgyn, northeastern Siberia: A 300 kyr long high-resolution terrestrial paleoclimatic record from the Arctic. Geophys J Int 150:109–126

    Article  Google Scholar 

  • Ollerhead J, Huntley DJ, Berger GW (1994) Luminescence dating of sediments from Buctouche spit, New-Brunswick. Can J Ear Sci 31:523–531

    CAS  Google Scholar 

  • Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Rad Meas 23:497–500

    Article  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge UK, 458 pp

    Google Scholar 

  • Rendell HM, Townsend PD, Wood RA (1995) TL and IRSL emission-spectra of detrital feldspars—new experimental-data. Phys Stat Sol B 190:321–330

    CAS  Google Scholar 

  • Richardson CA, McDonald EV, Busacca AJ (1997) Luminescence dating of loess from the northwest United States. Quat Sci Rev 16:403–415

    Article  Google Scholar 

  • Roberts RG, Spooner NA, Questiaux DG (1994) Paleodose underestimates caused by extended duration preheats in the optical dating of quartz. Rad Meas 23:647–653

    Article  CAS  Google Scholar 

  • Singhvi AK, Sharma YP, Agrawal DP (1982) Thermoluminescence dating of dune sands in Rajasthan, India. Nature 295:313–315

    Article  Google Scholar 

  • Spooner NA, Aitken MJ, Smith BW, Franks M, McElroy C (1990) Archaeological dating by infrared-stimulated luminescence using a diode array. Rad Protect Dos 34:83–86

    CAS  Google Scholar 

  • Spooner NA (1992) Optical dating: preliminary results on the anomalous fading of luminescence from feldspars. Quat Sci Rev 11:139–146

    Article  Google Scholar 

  • Stokes S (1992) Optical dating of quartz from sediments. Quat Sci Rev 11:153–159

    Article  Google Scholar 

  • Stokes S (1999) Luminescence dating applications in geomorphological research. Geomorphology 29:153–171

    Article  Google Scholar 

  • Watanuki T, Tsukamoto S (2001) A comparison of GLSL, IRSL and TL dating methods using loess deposits from Japan and China. Quat Sci Rev 20:847–851

    Article  Google Scholar 

  • Waters MR, Forman SL, Pierson JM (1999) Late Quaternary geology and geochronology of Diring Yuriakh, an early paleolithic site in central Siberia. Quat Res 51:195–211

    Article  Google Scholar 

  • Wintle AG (1973) Anomalous fading of thermoluminescence in mineral samples. Nature 245:143–144

    Article  CAS  Google Scholar 

  • Wolfe AP, Frechette B, Richard PJH, Miller GH, Forman SL (2000) Paleoecology of a >90,000-year lacustrine sequence from Fog Lake, Baffin Island, Arctic Canada. Quat Sci Rev 19:1677–1699

    Article  Google Scholar 

  • Zander A, Frechen M, Zykina V, Boenigk W (2003) Luminescence chronology of the Upper Pleistocene loess record at Kurtak in Middle Siberia. Quat Sci Rev 22:999–1010

    Article  Google Scholar 

Download references

Acknowledgements

OSL analyses of sediments from Lake El’gygytgyn was supported by NSF award OPP-0012345 to J. Brigham-Grette. Review comments by F.␣Preusser and an anonymous reviewer are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Forman.

Additional information

This is the sixth in a series of eleven papers published in this special issue dedicated to initial studies of El’gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forman, S.L., Pierson, J., Gómez, J. et al. Luminescence geochronology for sediments from Lake El’gygytgyn, northeast Siberia, Russia: constraining the timing of paleoenvironmental events for the past 200 ka. J Paleolimnol 37, 77–88 (2007). https://doi.org/10.1007/s10933-006-9024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-006-9024-7

Keywords

Navigation