Skip to main content
Log in

Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

Diagraphie de la conductivité électrique des fluides d’un forage profond au cours et après la foration: estimation de la transmissivité, de la salinité de l’eau et de la charge hydraulique des zones conductrices

Registro de conductividad eléctrica en el flujo del fluido de un pozo profundo durante y después de la perforación: estimación de trasmisividad, salinidad del agua y carga hidráulica de las zonas conductivas

钻探期间及之后深钻孔流动液体电导率测井:传导带的导水系数、水盐度和水头估算

Condutividade elétrica em fluido registrada em poço profundo durante e após a perfuração: estimativa da transmissividade, salinidade da água e carga hidráulica de zonas condutivas

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

Résumé

La diagraphie de la conductivité électrique des fluides (DCEF) est une méthode de tests hydrogéologiques qui est habituellement mise en œuvre dans un trou de forage existant. Toutefois, pour le forage profond COSC-1 de 2,500 m de profondeur, foré à Åre, dans le centre de la Suède, elle a été réalisée pendant la période de foration au cours d’une journée de pause, ce qui a un impact négligeable sur le calendrier de foration, mais fournit d’importantes informations sur les profondeurs des zones hydrauliquement conductrices et sur leurs transmissivités et salinités. Cet article présente une réanlayse de ce jeu de données avec un nouveau jeu de données de diagraphie DCEF obtenu peu de temps après le forage, également sur une période d’un jour, mais avec un débit de pompage et un niveau d’abaissement différents. Leur analyse conjointe permet non seulement d’obtenir de meilleures estimations de la transmissivité et de la salinité dans les fractures conductrices interceptées par le forage, mais fournit également les valeurs de charge hydraulique de ces fractures, information importante pour la compréhension de la structure hydraulique du milieu souterrain. Deux autres essais de diagraphie DCEF ont été effectués environ un an plus tard, et sont utilisés pour confirmer et affiner cette analyse. Les résultats montrent qu’entre 250 m et 2,000 m de profondeur, il y a sept zones hydrauliquement conductrices distinctes caractérisées par des charges hydrauliques différentes et de faibles valeurs de transmissivité. Pour le dernier test, effectué avec un abaissement de niveau d’eau beaucoup plus petit, l’afflux a cessé au niveau de certaines zones conductrices, confirmant que leurs charges hydrauliques sont inférieures à la charge hydraulique mesurée dans le puits dans des conditions sans pompage. Les défis qui accompagnent la diagraphie DCEF d’un jour sont résumés, au même titre que les enseignements tirés dans leur réalisation.

Resumen

El registro de conductividad eléctrica en el flujo de un fluido (FFEC) es un método de ensayo hidrogeológico que es usualmente realizada en un pozo existente. Sin embargo, para el pozo COSC-1 de 2,500-m de profundidad perforado en Are, centro de Suecia, ello fue realizado en el período de la perforación durante una pausa de lo planificado para un día, produciendo así un impacto insignificante en el programa de perforación, proporcionando además información importante sobre las profundidades de las zonas hidráulicamente conductivas y sus transmisividades y salinidades. Este trabajo presenta un reanálisis de este conjunto de datos junto con el nuevo conjunto de registros FFEC obtenidos poco después de la perforación, también durante un periodo de un día, pero con diferentes caudales de bombeo y depresiones del nivel de agua. Su análisis conjunto no sólo se traduce en una mejor estimación de la transmisividad y la salinidad en las fracturas interceptadas por la realización de la perforación, sino que también proporciona los valores de la carga hidráulica en estas fracturas, un dato importante de la información para la comprensión de la estructura hidráulica del subsuelo. Dos pruebas adicionales de registros FFEC se realizaron alrededor de un año más tarde, y se utilizaron para confirmar y perfeccionar este análisis. Los resultados muestran que a partir de 250 m a 2,000 m de profundidad, hay siete zonas hidráulicamente conductoras distintas con diferentes cargas hidráulicas y bajos valores de transmisividad. Para la prueba final, llevada a cabo con una depresión del nivel de agua mucho menor, la entrada cesó de algunas de las zonas conductoras, confirmando que sus cargas hidráulicas están por debajo de la carga hidráulica medida en el pozo en condiciones de no bombeo. Se resumen los desafíos que acompañan a los registros FFEC de un día, junto con las lecciones aprendidas en su tratamiento.

摘要

流动液体电导率测井是一种水文地质测试方法,通常在已有的钻孔中采用。然而,对于瑞典中部Åre 地区2,500米深的钻孔,测井是在钻探期间其中预定的一天非钻钻探时间内进行的,从而,对钻探计划没有什麽影响,还能提供水力传导带深度方面的重要信息以及其导水率和盐度。本文对这个数据集及钻探完成后不久获得的时间为一天但抽水量和水位降深不同的、新的流动液体电导率测井数据集进行了重新分析。对这些数据集的综合分析不仅能够获取钻孔遇到的传导断裂中导水率和盐度的估算结果,而且还能获取这些断裂的水头值,水头值是了解地表以下水力结构的重要信息。大约一年后进行了两个附加的流动液体电导率测井试验,并用于证实和精细化上述分析。结果显示,250米到2,000米深度内,有七个明显的水力上的传导带,这七个传导带具有不同的水头但导水率值很低。最终试验是在水位降深小得多的情况下进行的,从一些传导带的流入停止,确认其水头低于钻井孔非抽水条件下测量的水头。本文还概述了伴随一天的流动液体电导率测井出现的挑战以及应对这些挑战所得到的经验和教训。

Resumo

O registro da Condutividade Elétrica em Fluido (CEF) é um método de teste hidrogeológico geralmente conduzido num furo existente. No entanto, para os 2,500 m de profundidade no poço COSC-1, perfurado em Are, Suécia central, o teste foi realizado dentro do período de perfuração durante uma pausa de um dia programada, tendo assim um impacto insignificante sobre o cronograma de perfuração, ainda fornecendo informações importantes sobre profundidades de zonas hidraulicamente condutivas e suas transmissividades e salinidades. Este artigo apresenta uma nova análise deste conjunto de dados juntamente com um novo registro de dados de CEF obtido logo após a perfuração estar concluída, também durante o período de um dia, mas com uma diferente taxa de bombeamento e de rebaixamento de nível de água. A análise conjunta não só resulta em melhores estimativas de transmissividade e salinidade nas fraturas condutíveis interceptadas pela perfuração, mas também fornece os valores de carga hidráulica destas fraturas, um componente importante de informação para a compreensão da estrutura hidráulica da subsuperfície. Dois testes de registro da CEF adicionais foram feitos cerca de um ano depois, e são utilizados para confirmar e aperfeiçoar a análise. Os resultados mostram que de 250 m a 2,000 m de profundidade, há sete zonas condutoras hidraulicamente distintas com diferentes cargas hidráulicas e baixos valores de transmissividade. Para o teste final, conduzido com um rebaixamento do nível de água muito menor, o afluxo cessou de algumas das zonas condutoras, confirmando que as suas cargas hidráulicas estão abaixo da carga hidráulica medida no poço sob condições de não bombeamento. Os desafios que acompanham o registo da CEF de um dia são resumidos, juntamente com as lições aprendidas em enfrentá-los.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Dobson P, Tsang CF, Kneafsey T, Borglin S, Piceno Y, Andersen G, Nakagawa S, Nihei K, Rutqvist J, Doughty C, Reagan M (2016) Deep borehole field test research activities at LBNL, Rep. LBNL-106044, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Doughty C, Tsang CF (2000) BORE II: a code to compute dynamic wellbore electrical conductivity logs with multiple inflow/outflow points including the effects of horizontal flow across the well, Rep. LBL-46833, Lawrence Berkeley National Laboratory, Berkeley, CA, 2000. http://ipo.lbl.gov/lbnl12561673/. Accessed June 2016

  • Doughty C, Tsang CF (2005) Signatures in flowing fluid electric conductivity logs. J Hydrol 310:157–180

    Article  Google Scholar 

  • Doughty C, Takeuchi S, Amano K, Shimo M, Tsang CF (2005) Application of multi-rate flowing fluid electric conductivity logging method to Well DH-2, Tono site, Japan. Water Resour Res 41:W10401. doi:10.1029/2004WR003708

    Article  Google Scholar 

  • Doughty C, Tsang CF, Hatanaka K, Yabuuchi S, Kurikami H (2008) Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan. Water Resour Res 44:W08403. doi:10.1029/2007WR006441

    Article  Google Scholar 

  • Doughty C, Tsang CF, Yabuuchi S, Kunimaru T (2013) Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J Hydrol 482:1–13

    Article  Google Scholar 

  • Follin S (2008) Bedrock hydrogeology Forsmark, Site descriptive modeling, SDM-Site Forsmark, SKB report R-08-95. www.skb.com/publications/. Accessed June 2016

  • Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift B (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:313–333

    Article  Google Scholar 

  • Gee DG, Juhlin C, Pascal C, Robinson P (2010) Collisional orogeny in the Scandinavian Caledonides (COSC). GFF 132(1):29–44. doi:10.1080/11035891003759188

    Article  Google Scholar 

  • Lorenz H, Rosberg JE, Juhlin C, Bjelm L, Almqvist BSG, Berthet T, Conze R, Gee DG, Klonowska I, Pascal C, Pedersen K, Roberts NMW, Tsang CF (2015) COSC-1: drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Sci Drill 19:1–11. doi:10.5194/sd-19-1-2015

    Article  Google Scholar 

  • Moir RS, Parker AH, Bown RT (2014) A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs. Water Resour Res 50:6466–6478. doi:10.1002/2013WR013871

    Article  Google Scholar 

  • Rhén I, Forsmark T, Hartley L, Jackson P, Roberts D, Swan D, Gylling B (2008) Hydrogeological conceptualisation and parameterisation, Site descriptive modeling SDM-Site, Laxemar, SKB report R-08-78. www.skb.com/publications/ . Accessed June 2016

  • Thiem G (1906) Hydrologische methoden [Hydrogeological methods]. Gebhardt, Leipzig, Germany, 56 pp

  • Tsang CF, Doughty C (2003) Multirate flowing fluid electric conductivity logging method. Water Resour Res 39(12):1354–1362. doi:10.1029/2003WR002308

    Article  Google Scholar 

  • Tsang CF, Hufschmied P, Hale FV (1990) Determination of fracture inflow parameters with a borehole fluid conductivity logging method. Water Resour Res 26:561–578

    Article  Google Scholar 

  • Tsang CF, Rosberg JE, Sharma P, Berthet T, Juhlin C, Niemi A (2016) Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole. Hydrogeol J. doi:10.1007/s10040-016-1405-z

    Google Scholar 

  • West L, Odling N (2007) Characterization of a multilayer aquifer using open well dilution tests. Ground Water 45:74–84. doi:10.1111/j.1745-6584.2006.00262.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy, under contract number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory, and by the Swedish Geological Survey (SGU), grant number 1724. The drilling of the COSC-1 borehole was financed by the International Continental Scientific Drilling Program (ICDP) and the Swedish Research Council (VR: Grant 2013–94). Special thanks to Per-Gunnar Alm and the logging crew from Lund University for conducting the field operation for the FFEC logging, and to Boris Faybishenko, John Williams, and Richard Bown for their insightful review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Doughty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doughty, C., Tsang, CF., Rosberg, JE. et al. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones. Hydrogeol J 25, 501–517 (2017). https://doi.org/10.1007/s10040-016-1497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1497-5

Keywords

Navigation