Skip to main content
Log in

Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

After a comprehensive geophysical prospecting the Quaternary Mýtina Maar, located on a line between the two Quaternary scoria cones Komorní hůrka/Kammerbühl and Železná hůrka/Eisenbühl, could be revealed by a scientific drilling at the German–Czech border in 2007. Further geophysical field investigations led to the discovery of another geological structure about 2.5 km ESE of the small town Neualbenreuth (NE-Bavaria, Germany), inferred to be also a maar structure, being the fourth volcanic feature aligned along the NW–SE trending Tachov fault zone. It is only faintly indicated as a partial circular rim in the digital elevation model. Though not expressed by a clear magnetic anomaly, geoelectric and refraction seismic tomography strongly indicates a bowl-shaped depression filled with low-resistivity and low-velocity material, correlating well with the well-defined negative gravity anomaly of − 2.5 mGal. Below ca. 15 m-thick debris layer, successions of mostly laminated sediments were recovered in a 100 m-long sediment core in 2015. Sections of finely laminated layers, likely varves, rich in organic matter and tree pollen, were recognized in the upper (22–30 m) and lower (70–86 m) part of the core, respectively, interpreted as interglacials, whereas mostly minerogenic laminated deposits, poor in organic matter, and (almost) barren of tree pollen are interpreted as clastic glacial deposits. According to a preliminary age model based on magnetostratigraphy, palynology, radiocarbon dating, and cyclostratigraphy, the recovered sediments span the time window from about 85 ka back to about 270 ka, covering marine isotope stages 5–8. Sedimentation rates are in the range of 10 cm ka−1 in interglacials and up to 100 cm ka−1 in glacial phases. The stratigraphic record resembles the one from Mýtina Maar, with its eruption date being derived from a nearby tephra deposit at 288 ± 17 ka, thus supporting the age model of the inferred Neualbenreuth Maar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andreani L, Stanek KP, Gloaguen R, Krentz O, Domínguez-González L (2014) DEM-based analysis of interactions between tectonics and landscapes in the ore mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sens 6:7971–8001. doi:10.3390/rs6097971

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzender Gebiete. Pfeil, München

    Google Scholar 

  • Brandl PA, Genske FS, Beier C, Haase KM, Sprung P, Krumm SH (2015) Magmatic evidence for carbonate metasomatism in the lithospheric mantle underneath the Ohre (Eger) Rift. J Petrol 56:1743–1774. doi:10.1093/petrology/egv052

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Strauch G, Weise SM (2003) Isotopic evidence (3He/4He, 13CCO2) of fluid triggered intraplate seismicity. J Geophys Res 108:3–11

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G, Weise SM (2004) Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the western Eger Rift, central Europe. Geochim Cosmochim Acta 68:4935–4947

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G (2005) Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe. Geophys Res Lett 32:L08303. doi:10.1029/2004GL022205

    Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G, Tesař J (2008) The natural laboratory NW Bohemia—comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochem Geophys Geosys 9:Q04018. doi:10.1029/2007GC001921

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Strauch G (2009) Earthquake swarms in non-volcanic regions: what fluids have to say. Geophys Res Lett 36:L17309. doi:10.1029/2009GL039615

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope composition in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift, Czech Republic. Chem Geol 290:163–173

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G (2013) Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): a multi-isotope (C, N, He, Ne, Ar) approach. Chem Geol 356:193–208

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Strauch G (2014) Seismically triggered anomalies in the isotope signatures of mantle-derived gases detected at degassing sites along two neighboring faults in NW Bohemia, central Europe. J Geophys Res Solid Earth 119:5613–5632

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Wetzel H-U (2017, in press) Regional distribution pattern of carbon and helium isotopes from different volcanic fields in the French Massif Central: evidence for active mantle degassing and water transport. Chem Geol. doi:10.1016/j.chemgeo.2017.04.004

    Google Scholar 

  • Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton, Western Bohemia and Oberpfalz. Geol Rundsch 84:506–519

    Article  Google Scholar 

  • Brötzner A (2011) Gravimetriemessungen südöstlich von Neualbenreuth/Oberpfalz—Erkundung eines vermuteten Maardiatrems (in German). Ludwig-Maximilians-Universität München, unpubl Bachelor thesis, p 29

  • Büchel G, Pirrung BM (1993) Tertiary maars of the hocheifel volcanic field, Germany. In: Negendank JFW, Zolitschka B (eds) Paleolimnology of the European Maar Lakes. Springer, Berlin, pp 447–465

    Chapter  Google Scholar 

  • Cassidy J, France SJ, Locke AA (2007) Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. J Volc Geotherm Res 159:153–163

    Article  Google Scholar 

  • Chang L, Vasiliev I, van Baak C, Krijgsman W, Dekkers MJ, Roberts AP, Gerald JDF, van Hoesel A, Winklhofer M (2014) Identification and environmental interpretation of diagenetic and biogenetic greigite in sediments: A lesson from the Messinian Black Sea. Geochem Geophys Geosys 15(9):3612–3627

    Article  Google Scholar 

  • Coker VS, Pearce CI, Lang C, van der Laan G, Pattrikck RAD, Telling ND, Schüler D., Arenholz E, Lloyd R (2007) Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism. Eur J Miner 19:707–716

    Article  Google Scholar 

  • Dahm T, Hrubcová P, Fischer T, Horálek J, Korn M, Buske S, Wagner D (2013) Eger Rift ICDP: an observatory for study of non-volcanic, mid-crustal earthquake swarms and accompanying phenomena. Sci Drill 16:93–99. doi:10.5194/sd-16-93-2013

    Article  Google Scholar 

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophys 389:1–33

    Article  Google Scholar 

  • Fiala J, Vejnar Z (1997) The Cheb-Dylen Crystalline Unit, relations to the Moldanubian Zone. In: Vrana S, Stedra V (eds) Geological model of western Bohemia related to the KTB borehole in Germany, Sbornik Geologickych Ved, Geologie 47:56–57

    Google Scholar 

  • Fischer T, Horálek J, Hrubcová P, Vavrycuk V, Bräuer K, Kämpf H (2014) Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophys 611:1–27. doi:10.1016/j.tecto.2013.11.001

    Article  Google Scholar 

  • Fischer T, Matyskac C, Heinicke J (2017) Earthquake-enhanced permeability—evidence from carbon dioxide release following the ML3.5 earthquake in West Bohemia. Earth Planet Sci Lett 460:60–67. doi:10.1016/j.epsl.2016.12.001

    Article  Google Scholar 

  • Flechsig C, Heinicke J, Mrlina J, Kämpf H, Nickschick T, Schmidt A, Bayer T, Günther T, Rücker C, Seidel E, Seidl M (2015) Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina Maar (W-Bohemia, Czech Republic). Int J Earth Sci (Geol Rundsch) 104:2087–2105. doi:10.1007/s00531-014-1136-0

    Article  Google Scholar 

  • Geiss E, Rohrmüller J, Wassermann J, Hackl M, Kirschner U, Bachtadse V (2012) Geophysical investigations on a suspected Quaternary volcanic structure in North-Eastern Bavaria, Germany. Geophys Res Abstr 14, EGU2012-11126-1, EGU General Assembly 2012

  • Geissler WH, Kämpf H, Bankwitz P, Bankwitz E (2004) The Quaternary tephra-tuff deposit of Mýtina (southern rim of the western Eger Graben/Czech Republic): indications for eruption and deformation processes (in German with English summary). Zeitsch Geol Wiss 32(1):31–54

    Google Scholar 

  • Geissler WH, Kämpf H, Kind R, Bräuer K, Klinge K, Plenefisch T, Horálek J, Zedník J, Nehybka V (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger rift, Central Europe. Tectonics 24:TC5001. doi:10.1029/2004TC001672

    Article  Google Scholar 

  • Geissler WH, Kämpf H, Seifert W, Dulski P (2007) Petrological and seismic studies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia, central Europe. J Volc Geoth Res 159:33–69. doi:10.1016/j.jvolgeores.2006.06.011

    Article  Google Scholar 

  • Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys Res Lett 33:L05311. doi:10.1029/2005GL025158

    Article  Google Scholar 

  • Hirschmann G, Duyster J, Harms U, Kontny A, Lapp M, de Wall H, Zulauf G (1997) The KTB superdeep borehole: petrography and structure of a 9-km-deep crustal section. Geol Rundsch 86(Suppl.):S3–S14

    Article  Google Scholar 

  • Hradecký P (1994) Volcanology of Železná and Komorní hůrka in Western Bohemia. Věst Čes geol Úst 69(2):89–92

    Google Scholar 

  • Hrubcová P, Geissler WH, Bräuer K, Kämpf H, Vavryčuk V, Tomek Č (subm) The Moho and active magmatic underplating in the western Eger Rift, Central Europe. Submitted to Tectonics

  • Johnson A, Rye DM, Skinner BJ (1990) Petrology and stable isotope geochemistry of the metamorphosed zinc-iron-manganese deposit at Sterling Hill, New Jersy. EconGeol 85:1133–1161

    Article  Google Scholar 

  • Kämpf H, Seifert W, Ziemann M (1993) Mantel-Kruste-Wechselwirkungen im Bereich der Marienbader Störungszone, Teil 1: Neue Ergebnisse zum quartären Vulkanismus in NW-Böhmen. Z Geol Wiss 21:117–134

    Google Scholar 

  • Kämpf H, Bräuer K, Schumann J, Hahne K, Strauch G (2013) CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): Characterisation (delta C-13, He-3/He-4) and quantification of diffuse and vent CO2 emissions. Chem Geol 339:71–83. doi:10.1016/j.chemgeo.2012.08.005

    Article  Google Scholar 

  • Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R astron Soc 62:699–718

    Article  Google Scholar 

  • Kopecký L (1978) Neoidic taphrogenic evolution and young alkaline volcanism of the Bohemina Massif. Sbor geol Věd. Geol 31:91–107

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690

    Article  Google Scholar 

  • Lorentz V (1979) Phreatomagmatic origin of the olivine melilitite diatremes of the Swabian Alb, Germany. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology and geochemistry. Proceedings of the second International Kimberlite Conference, vol 1. Amer Geophys Union, Washington, pp 354–363

  • Lorenz V (2007) Syn- and post-eruptive hazards of maar-diatreme volcanoes. J Volc Geoth Res 159:285–312

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Mlčoch B, Konopásek J (2010) Pre-Late Carboniferous geology along the contact of the Saxothuringian and Teplá–Barrandian zones in the area covered by younger sediments and volcanics (western Bohemian Massif, Czech Republic). J Geosci 55:81–94

    Google Scholar 

  • Mrlina J (2016) Morphology of the youngest little volcanoes in western Bohemian Massif. In: Panek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic, World Geomorphological Landscapes, pp 101–111. Springer, Berlin. doi:10.1007/978-3-319-27537-6_9

    Google Scholar 

  • Mrlina J, Kämpf H, Geissler WH, van den Boogart P (2007) Assumed Quaternary maar structure at the Czech/German boundary between Mýtina and Neualbenreuth (western Eger Rift, Central Europe): geophysical, petrochemical and geochronological indications. Zeitsch geol Wiss 35(4–5):213–230

    Google Scholar 

  • Mrlina J, Kämpf H, Kroner C, Mingram J, Stebich M, Brauer A, Geissler WH, Kallmeyer J, Matthes H, Seidl M (2009) Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J Volc Geoth Res 182:97–112. doi:10.1016/j.jvolgeores.2009.01.027

    Article  Google Scholar 

  • Nickschick T, Kämpf H, Flechsig Ch, Mrlina J, Heinicke J (2015) CO2 degassing in the Hartousov mofette area, western Eger Rift, imaged by CO2 mapping and geoelectrical and gravity surveys. Int J Earth Sci 104:2107–2129. doi:10.1007/s00531-014-1140-4.2017

    Article  Google Scholar 

  • Nickschick T, Flechsig C, Meinel C, Mrlina J, Kämpf H (2017) Architecture and temporal variations of a terrestric CO2 degassing site using electrical resistivity tomography and CO2 gas measurements. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-017-1470-0

    Google Scholar 

  • Nowaczyk NR (2011) Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophys J Int 187:34–44

    Article  Google Scholar 

  • O’Nions RK, Griesshaber E, Oxburgh ER (1989) Rocks that are too hot to handle. Nature 341:391

    Article  Google Scholar 

  • Peterek A, Reuther CD, Schunk R (2011) Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift. Z Geol Wiss 39(5/6):335–365

    Google Scholar 

  • Proft E (1894) Kammerbühl und Eisenbühl, die Schichtvulkane des Egerer Beckens. Jahrb Geol Reichsanstalt Wien 44:25–85 (Wien)

    Google Scholar 

  • Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord, Supplément 1. Éditions du Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord, Supplément 2. Éditions du Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord. Éditions du Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Roberts AP (2015) Magnetic mineral diagenesis. Earth-Sci Rev 151:1–47

    Article  Google Scholar 

  • Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys. doi:10.1029/2010RG000336

    Google Scholar 

  • Rohrmüller J (2003) Die Forschungsbohrung Bayerhof—die Erkundung eines tertiären Maars im Steinwald, Oberpfalz (NE-Bayern). Geologica Bavarica 107:215–220

    Google Scholar 

  • Rohrmüller J, Horn P, Peterek A, Teipel U (2005) Specification of the Excursion Stops, First day: Geology and structure of the lithosphere, Introduction. In: Kämpf H, Peterek A, Rohrmüller J, Kümpel HJ, Geissler WH (eds) The KTB Deep Crustal Laboratory and the western Eger Graben, Schriftenreihe Dt Ges Geowiss, H, vol 40. Erlangen, pp 37–108

  • Ron H, Nowaczyk NR, Frank U, Schwab MJ, Naumann R, Striewski B, Agnon A (2007) Greigite detected as dominating remanence carrier in Late Pleistocene sediments, Lisan formation, from Lake Kinneret (Sea of Galilee), Israel. Geophys J Int 170:117–131

    Article  Google Scholar 

  • Ross PS, Nunez GN, Hayman P (2017) Felsic maar-diatreme volcanoes: a review. Bull Volcanol 79:20. doi:10.1007/s00445-016-1097-1

    Article  Google Scholar 

  • Seib N, Kley J, Büchel G (2013) Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state. Int J Earth Sci 102:875–901

    Article  Google Scholar 

  • Seifert W, Kämpf H (1994) Ba-enrichment in phlogopite of a nephelinite from Bohemia. Eur J Mineral 6:497–502

    Article  Google Scholar 

  • Sibrava V, Havlicek P (1980) Radiometric age of Plio-Pleistocene volcanic rocks in the Bohemian Massif. Vest Ustr Ust Geol, 55:129–150, Praha

    Google Scholar 

  • Skinner BJ, Erd RC, Grimaldi FS (1964) Greigite, the thio-spinel of iron; a new mineral. Am Miner 49:543–555

    Google Scholar 

  • Snowball I (1997) Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophys J Int 129:624–636

    Article  Google Scholar 

  • Špičák A, Horálek J (2001) Possible role of fluids in the process of earthquake swarm generation in the west Bohemia/Vogtland area. Tectonophysics 336:151–161

    Article  Google Scholar 

  • Stettner G (1997) Stratigraphische Gliederung Fichtelgebirge und nördlicher Oberpfälzer Wald. In: Stratigraphie von Deutschland II, vol 200. Cour Forsch-Inst Senckenberg, Frankfurt, pp 1–437

    Google Scholar 

  • Stettner G (1998) Geologische Karte von Bayern 1:25000: Blatt Nr. 6040/41 Neualbenreuth/Mähring

  • Stevenson A, Snowball I (2001) A large gyromagnetic effect in greigite. Geophys J Int 145:570–575

    Article  Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  Google Scholar 

  • Volkert RA, Johnson CA, Tamashausky AV (2000) Mesoproterozoic graphite deposits, New Jersey highlands: geologic and stable isotopic evidence for possible algal origins. Can J Earth Sci 37:1665–1675

    Article  Google Scholar 

  • von Gaertner HRV (1942) Die Schichtgliederung der Phyllitgebiete in Thüringen und Nordbayern und ihre Einordnung in das stratigraphische Schema, vol 62. Jb Reichsanst Bodenf, Berlin, pp 54–80

    Google Scholar 

  • Vylita T, Žák K, Cílek V, Hercman H, Mikšíková L (2007) Evolution of hot-spring travertine accumulation in Karlovy Vary/Carlsbad (Czech Republic) and its significance for the evolution of Teplá valley and Ohře/Eger rift. Z Geomorph N F 51:427–442

    Article  Google Scholar 

  • Wagner GA, Gögen K, Jonckheere R, Wagner I, Woda C (2002) Dating of Quaternary volcanoes Komorni hůrka (Kammerbühl) and Železna hůrka (Eisenbühl), Czech Republic, by TL, ESR, alpharecoil and fission track chronometry. Z Geol Wiss 30(3):191–200

    Google Scholar 

  • Wasilewski PJ, Thomas HH, Mayhew MA (1979) The MOHO as a magnetic boundary. Geophy Res Lett 6(7):541–544

    Article  Google Scholar 

  • Weinlich FH, Bräuer K, Kämpf H, Strauch G, Tesař J, Weise SM (1999) An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim Cosmochim Acta 63(3):653–653,671

    Google Scholar 

  • Woda C, Magina A, Wagner GA (2001) ESR Dating of xenolithic quartz in volcanic rocks. Quat Sci Rev 20:993–998

    Article  Google Scholar 

  • Xuan C, Channell JET, Hodell DA (2016) Quaternary magnetic and oxygen isotope stratigraphy in diatom-rich sediments of the southern Gardar Drift (IODP Site U1304, North Atlantic). Quat Sci Rev 142:74–89

    Article  Google Scholar 

  • Ziemann M, Bräuer K, Kämpf H, Seifert W, Thomas R (1994) Megaxenocrysten im quartären Basalt des Eisenbühlerste Untersuchungen an Fest- und Fluideinschlüssen. KTB Rep 94-2:241–250

    Google Scholar 

Download references

Acknowledgements

We thank the commune of Neualbenreuth, especially the mayor K. Meyer, the District Office Tirschenreuth and the water management office Weiden for the permission to perform the scientific drilling in the maar structure, and T. Pürner (Bavarian Environment Agency) for the support to realise the drilling. We appreciate technical assistance of M. Seidl and V. Polak (Institute of Geophysics, Prague) who performed geodetic measurements as part of the recent gravity survey. This survey was financially supported by the Bavarian Geological Survey, and partly by research infrastructure, CzechGeo/EPOS—project LM2015089, and by the German Research Foundation (DFG, project KA902/16-3). U. Lauterbach (Bavarian Environment Agency, Marktredwitz) was of great help during opening and initial processing of the core sections. P. Meier and S. Pinkerneil (both GFZ Potsdam) did sample preparation for TOC determinations. Thanks are given to G. Utschig (Senckenberg, Weimar) for preparing the pollen samples. Finally, we are very grateful to V. Lorenz and M. Melles for their overall constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nowaczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohrmüller, J., Kämpf, H., Geiß, E. et al. Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany). Int J Earth Sci (Geol Rundsch) 107, 1381–1405 (2018). https://doi.org/10.1007/s00531-017-1543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1543-0

Keywords

Navigation